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1 Density of solar photons

The scope of these notes is to write a few remarks about the Shockley-Queisser limit [1], also implemented also
in a Matlab® code, and using realistic data for solar spectra. Indeed, in [1], the Sun is modeled as a blackbody
at 6000K. Instead, in this work we are going to use data from the National Renewable Energy Laboratory
(NREL). In particular, let’s focus on the AM1.5G spectrum1, as shown in Fig. 1. Let sAM1.5 be an example of
solar spectrum in the NREL format. It is useful to know that it reported versus the wavelength λ and that it
has units

[sAM1.5] =
W

m2

1

nm
. (1)

In order to make this more treatable by our expressions, we are going to convert sAM1.5 in the corresponding
number of photons generated per unit time (p.u.t.), per unit area (p.u.a.), per unit energy (p.u.e.): φ:

φ =
d{phot. numb. p.u.a., p.u.t.}

dE
=

phot. numb. p.u.a. p.u.t.
d{phot. power p.u.a.}

dλ︸ ︷︷ ︸
sAM1.5

∣∣∣∣ dλdE
∣∣∣∣ phot. numb. p.u.a. p.u.t.

phot. power p.u.a︸ ︷︷ ︸
E

. (2)

1the notation for spectra, in this example AM1.5G, is used to indicate “air mass 1.5”, i.e., assume that the thickness of the
atmosphere is 1.5 times that of the zenith (that corresponds to a 48.2◦ zenith angle)
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Figure 1: Plot of the NREL solar spectrum data versus photon wavelength.

Having identified two of the three terms in (2) as sAM1.5 and the energy of each single photon, E, which is
related to its wavelength λ by the de Broglie relation

E = ℏω = hf =
hc

λ
, (3)

it is possible to compute the central term as∣∣∣∣ dλdE
∣∣∣∣ = ∣∣∣∣ d

dE

[
hc

E

]∣∣∣∣ = ∣∣∣∣hc d

dE

[
1

E

]∣∣∣∣ = hc

E2
. (4)

It is worth to spend few words about the need of the absolute value. Because λ and E are inversely proportional,
rigorously, we should have dλ ∝ −dE: this indicates that, for growing E, we have decreasing λ (and viceversa).
The reason why we can avoid to introduce this sign is related to numerical implementation aspects: these
differentials are used within integrals, but the change of variables causes also the integration bounds to start
from the higher to the lower. If our implementation uses always integration bounds defined from the lower to
the higher (because, e.g., the vectors containing the values of λ and E are always sorted), then this sign should
be removed by the absolute value. However, by plugging (4) in (2), we can finally obtain

φ = sAM1.5
hc

E3
. (5)

The physical meaning of (5) is: φ is the number of photons hitting a 1m2 area in 1 s and having an energy
included from E to E + dE.

The first relevant quantity that can be computed from the solar spectrum is the total power per unit area
received from the Sun, Ptot. To this aim,

Ptot =

∫ Emax

Emin

φ(E)E dE, (6)

where Emin, Emax are the minimum and maximum energies provided, in terms of wavelength, from NREL,
evaluated with (3) from λmax and λmin, respectively. Because φ is per unit energy, the dE removes the energy
dependence and ultimately multiplying times the photon energy E inside the integral returns a power per unit
area, which is further remarked to have units:
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Figure 2: Sketch of the absorptivity model adopted in the Shockley-Queisser formulation.

[Ptot] =
W

m2
.

2 Ultimate efficiency

Starting from φ as defined in the previous section, Shockley and Queisser suggest2 that it is already possible
to compute an ultimate efficiency, ηult, of a photovoltaic system. This is defined assuming that all the photons
having energy greater than the semiconductor bandgap, Eg, produce precisely the same effect as photons having
bandgap Eg. In this view, the following power density p.u.a. can be defined as:

Pult =

∫ Emax

Emin

α(E,Eg)φ(E)Eg dE, (7)

which is very similar to (6), but with two differences: the first is the presence of the absorptivity α(E,Eg),
which depends on the chosen material, and the fact that Eg is present in place of E, to indicate that such an
ultimate power is only related to radiative processes, i.e., having energies equal to the gap, therefore ignoring
what happens during thermalizations. In this work, we are going to assume, for the absorptivity α(E,Eg), a
step profile as the one shown in Fig. 2, described by the piece-wise defined expression

α(E,Eg) =

{
1, E > Eg

0, E < Eg.
(8)

In this view, it is possible to re-write (7) as

Pult =

∫ Emax

Emin

α(E,Eg)φ(E)Eg dE = Eg

∫ Emax

Eg

φ(E) dE = EgΦ
>(Eg), (9)

where we have extracted Eg from the integral, and defined Φ>(Eg) as the photon density p.u.a. p.u.t. having
energy greater than the energy gap Eg:

Φ>(Eg) =

∫ Emax

Emin

α(E,Eg)φ(E) dE =

∫ Emax

Eg

φ(E) dE. (10)

It is now possible to compute the ultimate efficiency as

ηult =
Pult

Ptot
=

Pult(Eg)

Ptot
=

EgΦ
>(Eg)

Ptot
, (11)

2The exact quote is: “Each photon with energy greater than Eg produces one electronic charge q at a voltage Vg = Eg/q.
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Figure 3: Ultimate efficiency vs. bandgap

where it is further remarked that Pult (which depends on the bandgap and, therefore, on the semiconductor used
to realize the solar cell) and Ptot are power densities per unit area. As an example, Fig. 3 shows the ultimate
efficiency computed with (11) and the AM1.5G spectrum chosen as a reference case study for these notes.

One should avoid overinterpretating this plot: the ultimate efficiency indicates an upper bound of the
photovoltaic efficiency, but it does not mean that it is possible to achieve, for bandgaps close to 1.1 eV (Si,
for example), solar cells with 50% efficiency. The correct interpretation is that it is not possible to have
efficiencies above 50%. However, the major question, at this point, should be: is this a good upper
bound ? In other words, is it possible to find upper bounds which are lower, and therefore more indicative of
the maximum efficiencies achievable by a solar cell?

3 Current-voltage characteristics of a solar cell

In order to answer to the last question of the previous section, when Shockley and Queisser presented the
ultimate efficiency, in addition to the approximated model of the Sun as a blackbody, they interpreted it as the
efficiency of a solar cell forced to work at T = 0K. In this view, it is like neglecting every information about
the cell being a semiconductor with a current flowing through it. In this view, a better upper bound could be
achieved by including these effects in the model.

Tracing JV characteristics only on the basis of first principles is going to be the toughest task of our to-do
list. This, because we have to choose carefully which first principle we should use to formulate our model. In
[1, Sect. III], Shockley and Queisser state that the JV results from balancing:

1. generation of e-h pairs by the incident solar radiation;

2. radiative recombination of e-h pairs (and consequent generation of photons);

3. nonradiative recombination processes;

4. extraction of holes from the p-region and electrons from the n-region in the form of a current density Jext
(or, given a device with cross section area A, I = AJext), which withdraws e-h pairs at a rate AJext/q;

4



Jgen

Jext

R

Figure 4: Set-up of a solar panel for realistic operation: the diode is illuminated, leading to an optical generation
current Jgen, part of which is converted, net of internal microscopic processes, into an external current Jext,
useful to feed a load resistance R.

this current can be interpreted as the current which can be extracted by the solar cell when it is connected
to an external circuit (e.g., a load resistance).

These four statements can be synthesized by the following equation:

Jgen − Jrec − Jext = 0, (12)

where Jgen indicates the current contribution generated by the solar light incident on the cell, and Jrec the
recombination current. Remarkably, one could establish an analogy of (12) with a carrier continuity equation,
where Jext is the total device current3. This equation could be conveniently re-written as

Jext = Jgen − Jrec. (13)

From the last expression, one could understand a major difference compared to the usual convention. In fact,
in (13), the sign of Jext has been changed, i.e., Jext is expressed with the circuit generator convention4.
This is clear if we recall that, considering for example a photodiode, optical generation causes an increase of
the inverse saturation current, which in the usual convention is negative; here, it appears that the total current
has the same sign of the generation current. To further clarify this idea, let’s consider the following circuit
representation:

It is to be remarked that Jext is the only observable electrical current in the device.
Given the fundamental equation (13), the scope of the following sections is computing the two main ingre-

dients, namely Jgen and Jrec, in such a way to being able to trace the JV characteristics of a solar cell.

3.1 Solar generation

The solar generation term Jgen can be computed quite easily from (10), since the generation current is simply
equal to the density of photons p.u.a., p.u.t., having energy greater than the bandgap, multiplied times the
elementary charge q:

Jgen(Eg) = q

∫ Emax

Emin

α(E,Eg)φ(E) dE = qΦ>(Eg). (14)

3.2 Recombination processes

Recombination is the hard point, because we have to describe it from first principles, i.e., trying to neglect
possible technological issues. Technology problems are related to defects, which give rise to nonradiative re-
combinations through intermediate (in the forbidden region) energy levels: basically, Shockley-Read-Hall (SRH)

3Even though this equation resembles a carrier continuity equation, neither drift nor diffusion are included. Shockley and
Queisser indicate this hypothesis by assuming infinite mobility: this allows the collection of carrier, regardless of where (in the
device) they have been generated. It is like having both drift and diffusion tending to ∞, and compensate each other, disappearing
and reducing the carrier continuity equation to (12), i.e., a balance between generation, recombination and extraction

4this means, having voltage and current with the same direction, so, have a generated power as a positive quantity for the
cell.
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Figure 5: Pictorial representation of the interaction of the solar cell (pn junction) with the surrounding black-
body (represented as a cloud). Being the two at thermodynamic equilibrium, the solar cell emits the same
number of photons that absorbes from the blackbody, and viceversa.

theory [2]. This is neglected in this work, because it is technology-dependent, not fundamental, and therefore
cannot be considered to formulate an efficiency upper bound: as technology improves, this limitation disappears!
Another recombination process is Auger, which is actually fundamental, but it occurs at high injections, which
is quite unlikely to regard the operation of a solar cell. Joule heating does not really exist, because we consider
the mobility to be infinite, therefore the device has no internal resistance; free-carrier absorption is neglected
as well.

Having removed all these recombinations, the only fundamental mechanism which can limit the efficiency is
radiative recombination. Radiative recombination occurs also at operation regimes comparable to SRH (if
the material quality is sufficiently high), and, if the solar cell temperature T is non-zero, it means that the cell
is not only absorbing photons, but also emitting them.

Shockley and Queisser quantified the radiation on the basis of the following concept experiment [3, 1].
Imagine to have a solar cell (a pn junction) at a temperature T , with neither contacts nor current flowing
through it (electrical/circuit current equal to 0), surrounded by a blackbody at the same temperature. If T ̸= 0,
the outer blackbody emits a radiation, i.e., a number of photons p.u.a., p.u.t, determined by Planck’s law:

NC0 =
2π

c2h2

E2

exp

(
E

kBT

)
− 1

dE. (15)

Take a moment to appreciate that this is the first time that the solar cell temperature T enters in our equations!
So: the outer blackbody and the pn junction are at the same temperature, no current is flowing, so they are
at thermodynamic equilibrium, as it is sketched in Fig. 5. The cell reacts to the emission of the blackbody
(therefore absorption, from the cell’s perspective) by emitting photons. And, because the two are at equilibrium,
the number of photons absorbed from the blackbody coincides with the number of emitted photons by the cell.
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Finally: because in this device it is pretty unlikely to have stimulated emission, it is possible to assume that
spontaneous emission is the dominant radiative mechanism. To summarize these ideas:

� We enclosed the pn junction in a blackbody with its same temperature, T .

� Because T ̸= 0, the blackbody emits photons, and the pn junction must absorb them.

� Because no current flows through the junction and the temperature of the cell is the same, the cell and
the blackbody are at equilibrium, so the cell emits the same number of photons that it absorbs from the
blackbody.

� Because only spontaneous emission makes sense to exist, we can compute the spontaneous emission rate at
equilibrium as the blackbody emission. The is the genial idea of the Shockley-Queisser paper [1]: instead
of focusing the analysis on the cell, the concept experiment allows to evaluate radiation on the basis of
thermodynamic considerations!

So, at equilibrium, we have that the current contribution related to radiative recombination is:

Jrec,0(Eg) = q

∫ Emax

Emin

α(E,Eg)NC0(E) dE = q

∫ Emax

Eg

NC0(E) dE, (16)

which has dimensions of a current density.

3.3 Tracing JV characteristics

We can take advantage of the fact that the dominant radiative mechanism is spontaneous emission to formulate
our model out of equilibrium, to achieve Jrec(Eg, V ). In fact, it is well known that spontaneous emission depends
on the product of electron and hole densities, np. as a consequence that it is required to have an electron-hole
recombination process to generate a photon. Therefore, it is understood that (16) can be generalized out of
equilibrium as [3]5

Jrec(Eg, V ) = Jrec,0

(
np

n2
i

− 1

)
. (17)

At equilibrium, np = n2
i and therefore this current goes to 0. In this view, (17) is a net recombination current,

whereas (16) is a recombination –but not generation– current. Then, for increasing n and p, Jrec grows as well.
Achieving (17) has been a bit tough, but worth. Indeed, it contains all the ingredients required to compute,

together with (13) and (14), the JV characteristics of the solar cell. Indeed, exploiting Shockley’s relations,
here recalled

n = niexp

(
EFn − EFi

kBT

)
p = niexp

(
EFi − EFp

kBT

)
,

(18)

one can write

np = n2
i exp

(
EFn − EFi + EFi − EFp

kBT

)
= n2

i exp

(
EFn − EFp

kBT

)
= n2

i exp

(
qV

kBT

)
. (19)

This last expression requires some mediation. First, let’s think about an ordinary diode, biased : it is known
that, in it, EFn −EFp is equal to qV , i.e., to the voltage applied to the diode; this is the motivation of the last
step of (19). However, here the scenario is different: what happens in a solar cell is that it is illuminated, and
e-h pairs are generated. Then, spontaneous emission tries to eliminate them. In other words, in a solar cell the
voltage V is something that restores the balance between optical generation and spontaneous emission. This is

5for drift-diffusion experts, (17) is basically equivalent to

q

∫
device

B(np− n2
i ) dz
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Figure 6: Example of JV characteristics traced with the Shockley-Queisser model, at T = 300K and for
Eg = 1.1 eV.

why a solar cell should be thought as a battery, rather than a diode. And this motivates the choice of writing
Jext in (13) with the generator convention.

Putting everything together, we are finally in shape to write Jext as:

Jext(Eg, V ) = Jgen(Eg)− Jrec(Eg, V ) = Jgen(Eg)− Jrec,0

[
exp

(
V

VT

)
− 1

]
, (20)

where we exploited

VT =
kBT

q
.

Figure 6 shows an example of JV characteristics traced with (20), for Eg = 1.1 eV and T = 300K. To this
aim, V has been treated as an independent variable. From a circuit standpoint, this could be seen as using as
boundary condition a voltage source, rather than a resistance6.

4 Solar cells: figures of merit

4.1 Short-circuit current, open-circuit voltage

From the JV characteristics shown in Fig. 6, it is possible to appreciate two quite peculiar non-operation points:

� the short-circuit current JSC, i.e., the current flowing through the device for V = 0;

� the open-circuit voltage VOC, i.e., the voltage measurable on the device with J = 0.

These are non-operation points because we must think to the solar cell as a generator, not as a diode: Because
the generated power is:

6Notice that this is the same procedure carried out when tracing the JV characteristics of a solar cell with a drift-diffusion
simulator: we force the circuit voltage as a boundary condition, allowing to draw Jext(V ).
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Jgen

Jext

+

−
V

Figure 7: Circuit for the experimental and/or drift-diffusion characterization of a solar panel. Compared to
that of Fig. 3, which indicates the real-world operation, in this circuit V is enforced externally through a voltage
generator, and Jext is measured.

P = IV = AJV, (21)

if J = 0 or V = 0, the power produced by the solar cell is 0.
The final scope of a generator is to generate power and to provide it to a load, therefore to a resistor, R.

In this view, the short circuit and open circuit are the two extreme loads, for R → 0 and R → ∞. Nevertheless,
JSC and VOC are quite interesting figures of merit, as they provide some intuitive indication of the solar cell
performance.

As far as JSC is concerned, its calculation is pretty straightforward:

JSC = Jext|V=0 = Jgen, (22)

i.e., the short-circuit current is simply equal to the generation term from (14).
For what concerns the open-circuit voltage VOC, it is defined for Jext = 0, so, by enforcing this condition on

(20), we have:

0 = Jgen(Eg)− Jrec,0

[
exp

(
VOC

VT

)
− 1

]
≃ Jgen(Eg)− Jrec,0exp

(
VOC

VT

)
, (23)

where we exploited the fact that, at V = VOC, it is pretty likely that the exponential is much larger than 1.
After manipulating as

exp

(
VOC

VT

)
=

Jgen(Eg)

Jrec,0(Eg)
,

one obtains

VOC(Eg) = VT ln

(
Jgen(Eg)

Jrec,0(Eg)

)
. (24)

An important point about VOC is that its maximum value is the bandgap voltage7, Vg = Eg/q. Indeed,
recalling the derivation (19), the exponent V arises from a difference of quasi-Fermi levels, which is lower than
the bandgap8. To close this discussion, Fig. 8 shows two curves versus the bandgap Eg: one is the bandgap
itself (dashed red curve), one is VOC(Eg), which is clearly following Eg, but is always lower than it.

7It is possible to find several proofs and arguments about this point, which are based on expressions of Jrec,0 recalling the
I0 of a diode (inverse saturation current), or something similar, but be very careful about them: these proofs often rely on
lifetimes, diffusion lengths, and implicitly these quantities pertain Shockley-Read-Hall theory and/or go against the infinite mobility
hypothesis. Instead, Shockley and Queisser in [1, eq.(3.21)] rely on a different argument, about the fact that the integral of (15)
gives linear and logarithmic contributions; the latter, for VT → 0, are negligible. In order to simplify this very complex integral,
one could approximate the denominator with the exponential (neglect the additional 1).

8unless we consider the unrealistic case of degenerate semiconductors

9



Figure 8: Comparison of the short-circuit voltage with the corresponding bandgap.

4.2 Maximum power point, fill factor, detailed balance limit

The solar cell must be used as a generator, i.e., something that provides power to a load connected to it. In
other words, we should tailor, as circuit boundary condition for the circuit in Fig. 3, a resistance R forcing the
solar cell to operate in the maximum power point (MPP), RMPP:

RMPP =
VMPP

AJMPP
. (25)

This means that, in order to design the optimal load for the solar cell, we need to find the maximum power
point voltage, then compute the JMPP from (20), and use (25). Recalling that the power density p.u.a. P can
be written as

P = JextV. (26)

Figure 9 shows an interpretation of the maximum power point on the basis of this definition. The left figure
shows the product JV versus V . In addition to the obvious observation that the open-circuit and short-circuit
conditions are not providing any power, it can be seen that this curve has a maximum at about 0.775V. Then,
the right figure is the same of 6, where also the straight line JRMPP is shown, emphasizing how this resistance
acts as a boundary condition for the solar cell, forcing its bias point.

The figure contains another interesting pictorial representation, which is the shaded rectangle defined by the
J and V axes, and by the V = VOC and J = JSC straight lines. Imagine that, ideally, the solar cell characteristics
would be equal to such rectangle: in this case, the maximum power would be the highest possible. In this view,
one could define the fill factor, ηFF, as

ηFF =
PMPP

VOCJSC
=

VMPPJMPP

VOCJSC
. (27)

The fill factor is an interesting figure of merit for the solar cell. Indeed, VOC and JSC provide indications about
the solar cell performance in extreme conditions, but without giving any information of what happens in the
middle, where it is most likely that the cell is going to operate. This is quantified by the fill factor. Referring
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Figure 9: Left: power density p.u.a. vs voltage; the maximum power point is indicated in red. Right: JV
characteristics, with a superimposed green rectangle built intersecting the V = VOC and J = JSC axes; this is
useful to introduce the idea of fill factor.

to Fig. 9(right), the fill factor can be interpreted as the ratio of the areas closed by the JV characteristics and
that of the green shaded rectangle: if the areas are coincident (ratio equal to 1), then the power at the MPP is
the highest possible, given VOC and JSC.

Now, let’s try to propose some expression to evaluate VMPP. First, it could be useful to re-write Jext in a
handier way. Based on the definition of VOC (see (23)), we can state that

Jgen = Jrec,0 exp

(
VOC

VT

)
.

Seen from another perspective, VOC is the voltage for which radiative recombination becomes so strong that
it fully compensates Jgen = JSC. Of course, for V > VOC, we have Jext < 0, so the solar cell behaves as a
traditional diode, no longer as a generator: we are out of the photovoltaic region 0 < V < VOC. Therefore, we
are sure that VMPP < VOC. Substituting the last expression in (20), we obtain

Jext ≃ Jrec,0

[
exp

(
VOC

VT

)
− exp

(
V

VT

)]
, (28)

where the approximation is related to neglecting the −1, because it is pretty likely that VMPP is quite close to
VOC. Then, we can plug this expression in (26), leading to

P = JextV = Jrec,0

[
V exp

(
VOC

VT

)
− V exp

(
V

VT

)]
.

Because our aim is to find the voltage at which P is maximum, then we can look for the zero of the derivative
of the last expression. The derivative is:

∂P

∂V
= Jrec,0

[
exp

(
VOC

VT

)
− exp

(
V

VT

)
− V

VT
exp

(
V

VT

)]
.

If we set this expression to 0, we find easily

exp

(
V

VT

)[
1 +

V

VT

]
= exp

(
VOC

VT

)
.

By applying the logarithm to both sides, and the property log(xy) = log(x) + log(y), we have:

VMPP

VT
+ ln

(
1 +

VMPP

VT

)
=

VOC

VT
, (29)
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Figure 10: Left: comparison of the ultimate (red) and detailed balance (blue) efficiency limits versus bandgap.
Right: fill factor vs bandgap.

which relates VOC to VMPP. Unfortunately, being this relation nonlinear, it requires an interative solver to be
solved. As an example, we can formulate a Newton’s method by trying to minimize the function f defined as:

f =
VMPP

VT
+ ln

(
1 +

VMPP

VT

)
− VOC

VT
, (30)

whose derivative is

df

dVMPP
=

1

VT
+

1

1 +
VMPP

VT

1

VT
=

1

VT
+

1

VT + VMPP
. (31)

Then, this can be used to formulate a Newton’s method, to refine VMPP as

V
(k+1)
MPP = V

(k)
MPP − f (k)

df (k)

dVMPP

(32)

where k indicates the Newton’s iteration. A good guess for VMPP is 0.9VOC, to start the iterations.
An alternative, more optimization-oriented solution, is to compute directly P , and try to minimize the

quantity 1/P instead9.
Once VMPP is known, then JMPP can be computed with (20), and PMPP with (26). Finally, it is possible to

define the detailed balance efficiency limit, ηDB, as:

ηDB =
PMPP

Ptot
. (33)

Figure 10(left) shows the detailed balance efficiency limit ηDB (blue curve), and compares it with the ultimate
efficiency (red curve), which is apparently higher: this means that the detailed balance efficiency limit is a much
more sensible upper bound, being lower of the ultimate one! For completeness, also the fill factor is reported
(right), versus the bandgap energy, showing how it increases with it.

9usually, solvers work well in minimizing problems, not in maximizing, so we can try to minimize the reciprocal of the quantity
that we want to maximize.
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5 Loss mechanisms in solar cells

We have computed the efficiency limit of a solar cell. Now, we are going to compute its complements, i.e., all
those terms that act as losses wasting part of the total solar power Ptot. This is pretty interesting because it
could suggest strategies aimed at overcoming such limit.

5.1 Limitations to the ultimate efficiency

Great limitations appear considering even just the ultimate efficiency ηult. In fact, when formulating it, we
already accept two loss sources.

5.1.1 Sub-bandgap photons

Photons with energy lower than the bandgap are lost, since they cannot induce the creation of a e-h pair. In
this view, one could define the power density p.u.a. of photons having E < Eg, P

<, as

P< =

∫ Eg

Emin

Eϕ(E) dE, (34)

so that the loss contribution caused by these photons is:

ℓ< =
P<

Ptot
. (35)

5.1.2 Thermalization

Thermalization concerns the fact that, if a photon has E > Eg, then not all of this energy helps creating e-h
pairs: 1 photon corresponds just to 1 pair, regardless of the energy of the photon. In other words, the excess of
energy is lost due to thermalization: energetic carriers thermalize immediately and an energy equal to E − Eg

is lost

Pth =

∫ Emax

Eg

(E − Eg)ϕ(E) dE, (36)

so that the loss contribution caused by thermalization is:

ℓth =
Pth

Ptot
. (37)

For what concerns the ultimate efficiency, this is all we need, since

ηult + ℓ< + ℓth = 1,

as it is also shown in Fig. 11, where the ultimate efficiency is compared to the other two contributions.

5.2 Limitations to the detailed balance efficiency

As demonstrated by Fig. 10, ηult is a worst lower bound with respect to ηDB, meaning that it is possible to
identify other loss mechanisms missing in the formulation of ηult. The useful power is just

ηDBPtot = VMPPJMPP.

Therefore, we have to look for what we are still missing.
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Figure 11: Decomposition of solar power into ultimate efficiency and remaining loss contributions.

5.2.1 Recombination losses

The first additional loss which we can imagine is radiative recombination: most of the detailed balance formu-
lation is based on it, therefore it is pretty reasonable that it takes away some of our power. Inverting (20) and
considering to work in the MPP, we can find

Jrec = Jgen − JMPP.

Radiative recombination (the only mechanism in our model) involves energy transitions with energy Eg, so we
could evaluate the radiated power Prec to be

Prec = Eg
Jrec
q

= Eg

[
Jgen
q

− JMPP

q

]
= Eg

[
Φ> − JMPP

q

]
, (38)

from which it is possible to evaluate the loss contribution of radiative recombination,

ℓrec =
Prec

Ptot
. (39)

5.2.2 Bandgap loss

We could verify that (39) and (33) do not add up to (11), showing that there is a missing term. In order to find
it, we could simply proceed by subtraction:

Pult − PMPP − Prad = EgΦ
> − JMPPVMPP − Eg

[
Φ> − JMPP

q

]
=

= JMPP

(
Eg

q
− VMPP

)
≜ Pg. (40)

We have defined this power density as Pg because of the interpretation we could attempt: by looking at it, we
could imagine that are losses pertaining the fact that VMPP < Vg. In fact, the quasi-Fermi level splitting would

14



Figure 12: Decomposition of solar power into potentially-useful electricity (detailed balance limit) and remaining
loss contributions.

have more room before their upper bound (the bandgap), but the MPP is not compatible with it. Then, just
like with the previous terms, it is possible to calculate the corresponding loss contribution as

Lg =
Pg

Ptot
(41)

As a final result, Fig. 12 shows the various loss contributions, compared to the useful energy, computed with
(34)–(41).
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