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Chapter 1

Introduction to perturbative
methods

In this chapter the idea of perturbative method will be introduced. Let’s
suppose that we need to solve a problem which is in some way similar to an
easier problem; we can “perturb” the solution of the easy problem, in order
to find the solution of the harder one.

This idea, without examples, may be complicated to understand; there-
fore, let’s consider a very easy mathematical problem: an algebraic equation
of third degree:

x3 + 10−4 x = 1

since 10−4 is a very small number, we can say that this problem is similar to:

x3 = 1

which can be solved analytically in an easy way: x = 1.

1.1 Analytical solution of the problem

Let’s consider the more generic problem:

x3 + px = q

this has an analytical solution, given by Tartaglia / Scipione del ferro (italian
mathematicians). The starting point is to write x as:

2



x = u+ v

by substituting, we can obtain:

u3 + v3 + (u+ v)(p+ 3uv) = q

we transformed the problem in one variable to a problem in two variables;
therefore, we can assume that u and v follow this constraint:

p+ 3uv = 0

by this way we have two variables and two equations:u3 + v3 = q

uv = −p
3

(1.1)

the second equation can be elevated to the third power, obtaining:
u3 + v3 = q

u3v3 = −p
3

27

(1.2)

now, if we call u3 = a, v3 = b, we have to solve:
a+ b = q

ab = −p
3

27

(1.3)

the problem now is: which are the solutions of the system? In other words:
which are the numbers a and b such that their sum equals q, and their product
equals −p3

27
? The answer is: the solutions of the second order degree equation

in a, b! Let’s say that:

a =
q +

√
q2 + 4p3

27

2
b =

q −
√
q2 + 4p3

27

2

So:

x =
3

√√√√q +
√
q2 + 4p

3

27

2
+

3

√√√√q −
√
q2 + 4p

3

27

2

3



Under the analytical point of view this solution may be interesting, but the
reason why it was very important must be found in the history of mathe-
matics: it was found before the formalization of the idea of complex number;
since it is geometrically evident that a cubic parabola has always at least one
interception with a straight line, but this formula may not produce any solu-
tion (if we have a negative number inside the square root), mathematicians
started thinking about the definition of a larger set of number: complex
numbers.

1.2 Application of a perturbative method to

the problem

Let’s go back to the former problem, and let’s see how we can solve it knowing
that the solution is close to 1; the starting equation was:

x3 + 10−4 x = 1

we know that:

x ' 1 + δ, |δ| � 1

by substituting this into the equation, it is possible to obtain:

(1 + δ)3 + 10−4(1 + δ) = 1

it is possible to eliminate small terms: these terms are the ones where δ has
a power greater than 1, and when we have 10−4 which multiplies δ; so:

1 + 3δ + 3δ2 + δ3 + 10−4 + 10−4δ = 1 ' 3δ + 10−4 = 0

so:

δ = −1

3
10−4

this solution is pretty accurate, and it is very easy to find.
Now, let’s consider the original problem in order to solve it in a nicer

fashion. If we have something like:

x3 + εx = 1, |ε| � 1
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there are several kinds of approximations; the zeroth-order approximation is
to consider ε→ 0, so:

x3 = 1

which has trivial solutions.
It is possible to improve the order of the approximation, finding a Taylor

expansion in the ε variable. Considering only the first terms, we have:

x = 1 + a1ε+ a2ε
2 + a3ε

3 + ...

then, if we substitute this expression into our equation, we obtain:(
1 + a1ε+ a2ε

2 + ...
)3

+ ε(1 + a1ε+ a2ε
2 + ...)− 1 = 0

by doing all calculations it is possible to write that all first and second order
terms are:

1 + 3a1ε+ 3a2
1ε+ 3a2ε

2 + ...+ ε+ a1ε
2 + a2ε

3 + ...− 1 = 0

we have an equation which equals zero; it is known that it is satisfied if and
only if all the coefficients which multiply the main variable (which is ε) are
zero; this means that we can group them, truncating to the second power:

(3a1 + 1)ε+ (3a2
1 + 3a2 + a1)ε2 = 0

so, in order to satisfy the equation, it is necessary to solve the following
system: {

3a1 + 1 = 0

3a2
1 + 3a2 + a1 = 0

by this way it is possible to find the second order approximation of the
solution; increasing the order, it is possible to find even more approximate
solutions.

1.3 Classification of perturbation problems -

Differential equation example

There is a classification for perturbation problems:
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• regular problems: these are problems like

x2 + εx = 1

• singular problems: these are problems like

εx2 + x = 1

these, are situations where the case ε = 0 changes the nature of the
problem.

In fact, in the first case, the problem remains a second-order problem, while
in the second case the nature changes completely: from having two solutions,
we have just one.

1.3.1 Example of differential problem: D’Alembert equa-
tion

An example of serious problem which can be solved is the D’Alembert equa-
tion:

∇2φ− 1

c2

∂2φ

∂t2
= 0

The first hypothesis which can be introduced is the monochromatic waves
one: the dependence on time of the solution of the differential equation is:

φ ∼ e−jωt, ω = 2πν

where ν is the frequency of the oscillation of the wave in time. If we substitute
this, we obtain:

∇2φ+
ω2n2

c2
φ = 0

but:

ω

c
=

2πν

c
=

2π

λ0

=
1

k
so:
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∇2φ+ k2n2φ = 0

In a real problem, n is not constant in space; what we can do is to consider
it approximately constant, obtaining as a solution a plane wave:

φ ∝ ejk ·r

where k is the wavenumber (in three dimensions), while r is the vector r =
(x, y, z). So:

k = k0nΩ̂

where Ω̂ is the unit vector of the propagation direction. In other words, the
solution of the differential equation is:

φ = ejnk0Ω̂·r

The presence of n is a limitation to the average speed of light: it is proved
that photons can only travel at a velocity equal to c, but since when they
meet an atom they are absorbed and re-emitted, there is a stop which reduces
the average velocity.

How can we solve this equation when λ is very small with respect to the
region where it is possible to sense a variation of the refractive coefficient n
?

As first step, it is convenient to re-write this solution, in a dimensionless
format: we can consider a change of variables like:(x

L
,
y

L
,
z

L

)
= (x̃, ỹ, z̃)

where L is the length which should be crossed in order to sense a variation
of n. Now, let’s define ∇̃2 as the spatial differential equation in the new
reference system as:

∇̃2 =
∑
i

∂2

∂x̃2
i

=⇒ 1

L2
∇̃2φ+ k2n2φ = 0

now, if we divide the equation for k2, we obtain:

1

k2L2
∇̃2φ+ n2φ = 0
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if we define

ε =
1

kL

we obtain the problem:

ε2∇̃φ+ n2φ = 0

which is the perturbative problem from which we start; in this case, we
have a singular perturbation, since if ε = 0 the nature and number of the
solutions changes.

From now on, in order to obtain a lighter notation, we will consider the
following notation for the problem (eliminating all tilde):

ε2∇2φ+ n2φ = 0, |ε| � 1

ε is the perturbative parameter of the method: it is very small, so it is the one
which should be use to formulate the method. In order to solve this method
there is a mathematical technique, called WKB method. This technique
takes its name from the three researchers who formulated it, in the quantum
mechanics theory: Wentzel, Kramer, Brillouin.

The idea is: if we have a constant refraction coefficient n, the solution of
the PDE is a plane wave, so ejnΩ̂·r . The solution of the perturbated problem,
where the perturbation is related to the fact that n is variable in space, will
be in some way similar, like:

φ(r) = ej
S(r)
ε

where S(r) will be something different from k ·r , since we will consider a non-
constant n in space. It is important to remark that ε is at the denominator
of the exponential; otherwise the method could not be working.

Now, considering the expression of the solution:

φ(r) = ej
S(r)
ε

we substitute it in the equation

ε2∇φ+ n2φ = 0

so, let’s evaluate every term:
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∇2φ = ∇ · (∇φ)

where

∇φ =
j

ε
φ∇S

so:

∇ · (∇φ) = ∇(φ
j

ε
) · ∇S + φ

j

ε
∇2S =

j

ε
φ∇S · ∇S + φ

j

ε
∇2S =

=
j

ε
φ∇2S − 1

ε
φ(∇S)2

Now, by substituting in the differential equation, doing some algebra, we can
find:

jε∇2S − (∇S)2 + n = 0

We started from a linear equation, and now we got a nonlinear equation
in S: it seems that, using this method, we obtained a more complicated
problem. Anyway, we are going to discover that these ideas lead also to
some advantages.

Up to this point, we introduced only a different formulation of the same
equation; we are going to approximate S(r) as follows:

S(r) = S0(r) + εS1(r) + ε2S2(r) + ...

We want a first-order approximation; therefore, it is possible to truncate
this expression up to the second term: S1(r). Let’s remark that a good
perturbative method should work with few terms. Now, we are going to
substitute all these expressions in the last differential equation, obtaining:

jε
[
∇2S0 + ε∇2S1 + ...

]
− [∇S0 + ε∇S1 + ...]2 + n = 0

so, let’s expand what is inside the second group of parentheses, truncating
at first order in ε:

−→ (∇S0)2 + 2∇S0ε∇S1 + ...

so, if we collect from both terms constant in ε neglecting all the terms with
a power of ε higher than the first one, just like we did for the algebraic
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equation, we obtain the following system of equations (by equating all the
coefficients of the equation in ε to zero):{

(∇S0)2 − n2 = 0

j∇2S0 − 2∇S0∇S1 = 0

Now, we have two equations: the first one is only in S0(r), the second one in
both S0(r) and S1(r). So:

S(r) ' S0(r) + εS1(r)

and so:

φ(r) = ej 1
ε

[S0(r)+εS1(r)] = ej 1
ε
S0(r) ejS1(r)

now, some observations: in the first equation, everything will be real, so S0(r)
will be a real function of r ; in the second equation, there is S0(r) which is
real (from the first one), and the other term; this means that if ∇S0 is real,
since we have something equal to an imaginary term, S1 will be imaginary.
This means that the first exponential will be complex, while the second one
will be real. Moreover, since the first term is divided by ε, the argument
of the exponential will be very big; being it complex, this means that the
first exponential term is associated to quick oscillations. Since the second
exponential term has an imaginary S1(r), it will be an amplitude variation
term (small).

This is correct, if we think that this is a perturbated problem: in the
non-perturbated problem, which is the study of a homogeneous medium (no
variation of n), there is only an oscillation term, with constant amplitude; in
this case there is a variation of the amplitude, but it is very small1

Since the second exponential is an amplitude term, we define the following
term:

A = ejS1(r)

so:

1let’s remark that this situation can model a continuous variation of n, but not a steep
variation, like what happens when there are two hemi-spaces of different dielectric! In this
case there may be also a total reflection phenomenon or something else, which can not be
analyzed by means of this kind of approximation.
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∇A = jA∇A

so:

∇S1 = −j
∇A
A

This can be substituted in the second equation of the system, obtaining:

j∇2S0 +
2j

A
∇A · ∇S0 = 0

now, sorting and eliminating common j, we obtain:

∇2S0 +
2

A
∇S0 · ∇A = 0

This allows us to re-write the two equations as:{
(∇S0)2 − n2 = 0

A∇2S0 + 2∇S0 · ∇A = 0

where the first equation is related to phase of the wave, while the second
equation is related to its amplitude.

Now, let’s consider the phase equation:

(∇S0)2 − n2 = 0

this equation means that the norm of the gradient of S0 equals n:

|∇S0(r)| = n

this is the Eikonal equation. Since ∇S0 is a vector, we know that:

∇S0 = nΩ̂(r)

so, it has a modulus (which is n), and a certain direction Ω̂, which depends
on the point of the space, r , that we are considering. In other words, for
each point of the space there is a certain Ω̂(r).

Starting from a point of the space it is possible to draw a curved line
which is tangent in each point to Ω̂(r); this line is called light ray. This
curve can be parametrized with a s parameter: the curvilinear coordinate,
which indicates the length of part of the curve.
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We can imagine to follow the light ray: in each point there will be a
different amplitude A, governed by the second differential equation:

A∇2S0 + 2∇S0 · ∇A = 0

So, recalling that ∇S0 = n ˆΩ(r), we have:

∇S0 · ∇A = nΩ̂ · ∇A

it is known that the scalar product between a gradient and a unit vector is
the directional derivative along the direction pointed by the unit vector:

nΩ̂ · ∇A =
∂A

∂s

so, it is possible to write, considering the second equation of the system,
which was A∇2S0 + 2n∂A

∂s
= 0 (substituting directly the term ∇A · ∇S0):

∂A

∂s
= − A

2n
∇2S0

this is the law of variation of the amplitude along the path s of the ray of
light.

Now, let’s assume that there is a plane where we can measure the am-
plitude of the electromagnetic radiation, and that’s say that within a circle
there is radiation (A 6= 0), while outside of it there is no radiation. If we try
drawing a light ray starting from a point which do not belong to the circle, it
will carry no radiation power, because outside of the circle radiation equals
zero, and the derivative is zero. In other hand, this is a dark region.

On the other hand, if we take all the possible rays starting from a point
belonging to the circle, and we propagate them up to another plane, we can
see that on this plane rays will still begin to some surface (maybe different
from the starting circle): radiation is confined within the tube.

Now, if the size of the circle is very small, we can approximate everything
with a single line: this is geometric optics, which means studying the
propagation of light simply by studying a curved trajectory. By describing a
classical electromagnetic equation by means of a perturbative expansion, it
is possible to obtain geometric optics!

We stated that:

∇S0 = nΩ̂
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We can deduce a simple equation from a single light ray, simply by con-
sidering the derivative of S0 with respect to its i-th component; this means
simply to write the previous equation, which is in a compact, vector form,
by components: ∇S0 is a vector, where each i-th component is ∂S0

∂xi
, where

xi is the i-th component of the reference system; therefore, we have:

nΩi =
∂S0

∂xi

(in fact, Ω̂ = (Ω1,Ω2, ...), so the i-th component is Ωi, just like the derivatives
of S0. The derivative of this quantity along a ray of light is:

∂

∂s
[nΩi] = Ω̂ · ∇ [nΩi] = Ω̂ · ∇

[
∂S0

∂xi

]
at this point, it is possible to exchange the order of differentiation, obtaining:

= Ω̂ · ∂
∂xi
∇S0

but, from the phase equation, we have:

Ω̂ =
1

n
∇S0

so:

∂

∂s
[nΩi] =

(
1

n
∇S0

)
·
(
∂

∂xi
∇S0

)
by multiplying and dividing by 2 it is possible to obtain:

=
1

2n
2∇S0 ·

∂

∂xi
∇S0

now, we can observe that:

∂

∂xi
(∇S0)2 = 2∇S0

∂

∂xi
∇S0

so, this expression will equal:

=
1

2n

∂

∂xi
(∇S0)2

but, from the phase equation:
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(∇S0)2 = n2

so:

1

2n

∂

∂xi
(n)2 =

1

2n
2n

∂n

∂xi
=
∂n

∂xi

this is a set of equations, one for each component; by collecting all these
components in vector form we obtain, finally:

∂

∂s

(
nΩ̂
)

= ∇n

This, is the fundamental equation of geometric optics; this means that this
is the formula which allows us to deduce the trajectory of a ray of light.

In order to understand the power of this equations, let us consider a
simple example where we apply it: given a medium where n is function only
of the x variable (coordinate), considering a planar domain (identified by a
couple of variables, (x, y), we have something like:

where the differential equation is:

d

ds
(nΩx) =

∂n

∂x

this is just one differential equation: one component of the equation that we
have previously written; in this case, ∂n

∂x
is not equal to zero for hypothesis,

because we stated that n does not depend on y, but it may depend on x. On
the other hand, the second equation will be:

d

∂s
(nΩy) = 0

this is the y component of the same equation; since we have two coordinates,
we have a 2d problem, constituted by a system of two differential equations:

d

ds
(nΩx) =

∂n

∂x
d

ds
(nΩx) = 0

if the light ray is solution of these two equations, given ϑ the angle between
the Ω̂ unit vector (which identifies in each point the direction of the curvi-
linear abscissa) and x̂, we have that:
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Ωx = cos(ϑ)

with the same idea, we can find, for ŷ, that the y component of Ω̂ is:

Ωy = sin(ϑ)

but, for the second equation, we have that:

d

ds
(nΩy) =

∂

∂s
(n sin(ϑ)) = 0

therefore, n sin(ϑ) is a constant quantity; this is the Snell’s law refraction.
In other words, given a discontinuity of refraction index along x, but not
along y, we have that:

n1 sin(ϑ1) = n2 sin(ϑ2)

1.3.2 Fermat’s principle

There are several ways to write the Snell’s law of refraction; the classical
deduction is based on the Fermat principle, which allows us to find the
geometrical optics theory. Fermat discovered that if we consider a light ray
which travels from some point A to some other point B, light chooses the
trajectory which minimizes the flight time from A to B. What does flight
time means, exactly? Well, for instance the space can contain some dielectric,
therefore the refraction index may be different; light chooses the minimum
path, keeping into account also the material in the space: the minimum path,
in this sense (which is not necessarily the shortest one!). Now we discuss
this idea. We have that:

dt =
ds
c
n

in fact, light travels at a speed equal to c
n
, where n as usual is the refraction

coefficient. Therefore, when light moves for a space ds, with this speed, it
needs a time equal to dt. Inverting this:

c dt = n ds

we can apply the integrating operator at both terms, obtaining:
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∫ B

A

c dt =

∫ B

A

n ds

but:

c dt = ctAB

Fermat’s principle says that:∫ B

A

n ds = ctAB = minimum

the flight time is minimum, therefore the integral of the refraction coefficient
along the path of the ray of light should be minimum; in this case, what
it is not known a priori is the path: we imagine not-to-know which will be
the path taken by light; but what Fermat states is that, knowing n in every
point of the space, the path is the one which minimizes the line integral of the
reflection coefficient (which is related to the flight time as we have proved).

The reason why we have introduced all this theory is the fact that this is
a variational problem: the path is the one which minimizes this integral
functional! In this case, actually, it is not necessary to apply any classical
variational technique, because the solution is already known: it is the equa-
tion of the geometrical optics! As a matter of fact, since we know that the
trajectory of the ray of light satisfies the geometrical optics equation, we can
say that its solution minimizes this integral. We know that:

∇S0 = nΩ̂

now, let’s focus on one particular light ray, which satisfies this equation; we
project this equation on the Ω̂ of this equation, so:

∂S0

∂s
= Ω̂ · (∇S0) = n

if we calculate this integral:∫ B

A

n ds =

∫ B

A

dS0

ds
ds =

∫ B

A

dS0 = S0|BA = S0(B)− S0(A)

we obtain that the integral is just the difference of S0 in these two points;
this value has to be the minimum possible value. Ω̂ has been chosen
exactly equal to the Ω̂ of the geometric optics equation.
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If we choose a different line, identified by a different unit vector Ω̂′ 6= Ω̂,
we can prove that the integral will be surely greater. In this case, we have:

dS0

ds′
= Ω̂′ · ∇S0 = nΩ̂′ · Ω̂

in this case, Ω̂′ · Ω̂ ≤ 1, because they are not parallel! Ω̂′ in fact is a different
ray of light, so it is not parallel to the Ω̂ of the geometric optics differential
equation. Therefore:

dS0

ds′
≤ n

now, let us calculate the integral:∫ B

A

dS0

ds′
ds′ ≤

∫ B

A

nds′

therefore, in general:

S0|BA ≤
∫ B

A

n ds′

but we proved that:

S0|BA =

∫ B

A

n ds

so: ∫ B

A

n ds ≤
∫ B

A

n ds′

this means that, if our ray of light is on a trajectory s′ which is different from
the s defined from the geometric optics, it will not minimize this integral,
therefore this will not be the actual ray of light, due to the Fermat’s
principle! It will not minimize the integral!

Now, let’s start from:

d

ds
(nΩ̂) = ∇n

Let’s focus on this, and study its aspects. First of all, let’s write it in an
expanded fashion, using the Leibnitz’s rule:

17



d

ds
(nΩ̂) =

dn

ds
+ n

dΩ̂

ds
= ∇n

Now, let’s work on the derivative of Ω̂: we have that

Ω̂ · Ω̂ = Ω̂2 = 1

now, let’s write the derivative of Ω̂2:

dΩ̂2

ds
= 2Ω̂ · dΩ̂

ds
= 0

in fact, since Ω̂2 = 1, so since it is constant, its derivative is zero; in order to
prove in a more formal fashion this equation, it is possible as usual to write
it by components:

Ω̂2 = Ω̂ · Ω̂ =
n∑
i=1

ΩiΩi

so, exploiting the linearity of the derivative and the Leibnitz’s rule:

d

ds

n∑
i=1

ΩiΩi =
n∑
i=1

Ωi
dΩi

dxi
+Ωi

dΩi

ds
=

n∑
i=1

Ωi
dΩi

dxi
+

n∑
i=1

Ωi
dΩi

dxi
= 2

n∑
i=1

Ωi
dΩi

dxi
= 2Ω̂·∂Ω̂

ds

This equation says that the derivative of Ω̂ with respect to s is orthogonal
to Ω̂ itself; this means that:

dΩ̂

ds
=
N̂

R

where N̂ is the unit vector normal to Ω̂, while R is the curvature radius:
this is the radius of the circle tangent to the curve in each point; in other
words, it is the normal unit vector, which is parallel to the centripetal
acceleration vector; given Ω̂ parallel to the velocity (in a classical mechanics
framework), N̂ is normal to it. This is a classical formula of the differential
geometry of curves.

We know that the directional derivative along s of the refraction coeffi-
cient is:
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dn

ds
= Ω̂ · ∇n

therefore, it is possible to write the equation of geometrical optics in the
following way:

N̂

R
=
∇n− (Ω̂ · ∇n)Ω̂

n

this means that, from ∇n, we subtract its projection along Ω̂; by this way,
since this is a vector subtraction, we eliminate the component along Ω̂, ob-
taining only a component along N̂ .

In fact, given ∇n, we have that Ω̂ · ∇n is the projection of the gradi-
ent towards Ω̂; gradient minus projection means that the resulting vector is
directed towards N̂ ; so, we can synthetically write this equation as follows,

recalling that dn
ds

+ ndΩ̂
ds

= ∇n:

N̂

R
=

(∇n)⊥
n

therefore, taking the norm of this equation, we obtain:

1

R
=
|(∇n)⊥|

n

this is the norm of the perpendicular component of the gradient of the re-
fraction coefficient. This allows us to calculate the radius of curvature of the
ray of light.

Now, let’s stop focusing on optics for a moment, and let’s focus on clas-
sical mechanics: this equation is not very different from the equation of an
object moving in a potential field: given U(x ) a potential field, the equation
of the motion is the Newton’s las:

ma = F

where F can be found as the gradient of the potential, changing the sign:

F = −∇U

therefore, given the trajectory of a point, the acceleration can be decomposed
in two contributions: one is parallel to the tangent line, while the other one
is normal to it; this second contribution is called centripetal acceleration:
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a = a⊥ + a‖

but from basic physics we know that:

a⊥ =
v2

R
N̂

where N̂ has the very same meaning as before. Therefore, since we are just
dividing acceleration in two parts, we can state that Newton’s law is valid for
both parts: we just have to divide this equation in two equations; considering
the equation related to the centripetal acceleration, we have:

ma⊥ = F⊥

therefore:

m
v2

R
N̂ = [−∇U ]⊥

this, considering only the normal component of the gradient. Here, we have
mass, which is a constant; velocity, which is not constant; therefore, we can
write that:

1

2
mv2 + U = E

where E is the total energy, given by the sum of kinetic energy and potential
energy. Inverting this formula:

mv2 = 2(E − U)

but, from previous equation, if we calculate the gradient of the right term,
and take the normal component:

N̂

R
=

[(∇(−U)]⊥
2(E − U)

Now, if we consider the fact that E is a constant, so that ∇E = 0, we can
add it inside the gradient sign, and obtain:

N̂

R
=

[(E −∇(−U)]⊥
2(E − U)

20



this seems to be a close relative to the geometrical optics equation previously
written; we found that:

N̂

R
=

(∇n)⊥
n

except for the two, it is the same. But, if we define:

n −→
√
E − U

we obtain:

[∇(
√
E − U)]⊥√
E − U

=
[(E −∇(−U)]⊥

2(E − U)

in fact:

∇(
√
E − U) =

1

2

1√
E − U

∇(E − U)

therefore, one equation becomes the other.
This means that the trajectory of the light ray equals the one of the

photon, simply substituting to n this combination of the total energy E
and of the potential U ; this happens because light and matter follow similar
rules, therefore the trajectory of photons is the same of the light ray one.
This means that this variational principle known as Fermat’s principle has a
cousin in classical mechanics: also from a material point of view it is possible
to establish a variational principle which states that the trajectory of a point
comes from the minimization of an integral functional. In this case we just
have to perform the substitution to n in the integral, obtaining:∫ B

A

√
E − U ds = minimum

therefore, the actual trajectory of the particles is the one which minimizes
this integral functional. This principle is called Maupertuis Principle.

This principle is very important, for this reason; we started from the wave
equation:

∇2φ+
n2ω2

c2
φ = 0
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we obtained, from its approximation, geometrical optics, which can be sum-
marized by means of the Fermat principle, which states that it can be found
by minimizing an integral functional. On the other side, we introduced clas-
sical mechanics, which can be summarized by the Maupertuis principle; what
is missing, is the equation equivalent to the wave equation, for classical me-
chanics. In fact, at the beginning of the 20th century, scientists discovered
that, for elementary particles, it is necessary to use a wave approach also
for particles; therefore, we can ask to ourselves: is there some wave equation
describing how matter propagate in space? The idea is to write something
like:

∇2Ψ + C(E − U)Ψ = 0

the (E − U) term comes from the Maupertuis principle; C is some constant
which should be determined. This equation is different from a point propaga-
tion: in the usual meaning, a wave propagates in space; here, the evolution
of this wave is representable in a different way: now, we can analyze this
wave with a line, with a trajectory, not with a space surface.

Let us find this constant C: given a free particle (therefore, potential
U = 0), we have:

∇2Ψ + CEΨ = 0

the solution for this equation is very easy: just like before, plane waves :

Ψ = ejkx

from where, we can say, substituting this:

∇2Ψ = ∇2ejkx = −k2ejkx = −k2Ψ

therefore:

−k2Ψ + CEΨ = 0

but, from experiments, we know that:

p = ~k

this is simply the De Broglie formula, which comes also on experiments on
diffraction of particles. On the other hand, since in this case there is no
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potential energy, the total energy equals the kinetic energy; moreover, p =
mv:

E =
1

2
mv2 =

1

2m
m2v2 =

p2

2m

finally, from the equation, simplifying Ψ:

k2 = CE =⇒ p2

~2
= C

p2

2m

which leads to:

C =
2m

~2

therefore, the equation is, by applying the superposition of a potential U :

− ~2

2m
∇2Ψ + UΨ = EΨ

this is called Schrödinger equation, and this is the equation of matter
waves; for U = 0, which is the case of free particles, matter follow the
geometrical optics, since the Schrödinger equation degenerates in the wave
equation.
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Chapter 2

Calcolo variazionale

2.1 Panoramica sul calcolo variazionale

Il calcolo variazionale si può vedere come una sorta di calcolo dei minimi di
una funzione di una o più variabili; in verità però, invece che una funzione,
si cerca di minimizzare un funzionale: questo significa che si cerca sempre
di minimizzare un numero, dove però quelli che si variano non sono punti,
ma funzioni: si cerca una certa funzione tale per cui, elaborata in qualche
modo (per esempio, integrata), essa restituisca un numero che sia il minimo
possibile. Si consideri dunque una certa funzione L(y, y′, t), dove essa è
funzione di una certa funzione y(t), della sua derivata rispetto a t, e del
parametro t (per esempio t può assumere il significato di tempo). Si definisce
un funzionale F come:

F (y) =

∫ b

a

L

(
y,

dy

dt
, t

)
dt

il nostro obiettivo è minimizzare F (y): con y(t) si ricava L, la si integra, e
ciò produce un numero: il risultato del funzionale applicato a y(t).

Esempio: curva di minima lunghezza

Per capire qual è il senso di questo tipo di formulazione, si immagini di voler
trovare la funzione y(x) tale per cui, fissati due punti A e B, lAB è minima.
Per fare ciò, prima di tutto si calcoli il differenziale:
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ds2 = dx2 + dy2 = dx2

[
1 +

(
dy

dx

)2
]

dunque:

ds =

√
1 +

(
dy

dx

)2

dx

lAB =

∫ B

A

ds =

∫ B

A

√
1 +

(
dy

dx

)2

dx

Cenni ad altri problemi

Un altro problema che si può studiare con queste tecniche è la determinazione
della brachistocrona: dati due punti A e B, si può cercare la curva y(x)
tale per cui, se una pallina scende dalla curva definita da questa, il tempo
che essa impiega per arrivare da A a B deve essere minimo. Questo è una
sorta di piano inclinato generalizzato, dove l’obiettivo è proprio determinare
l’andamento dell’inclinazione del piano: più si attribuisce una curvatura alla
curva, più essa diventa lunga; d’altro canto, se essa è rettilinea, allora ci mette
più tempo a prendere velocità, e quindi si perde tempo in questo modo. Il
risultato sarà dunque un trade-off tra la lunghezza della curva e il tempo che
la pallina ci impiega a prendere velocità.

Un altro esempio di problema è lo studio della forma ottimale dei fili della
luce: la catenaria. In questo caso il problema è ancora più complicato, dal
momento che il problema è la ricerca di un minimo con vincolo: si
vuole la curva che minimizza l’energia potenziale, dove però la lunghezza
ha un valore fisso L: questo introduce un vincolo aggiuntivo al problema
precedente: la lunghezza del filo.

2.2 Equazioni di Eulero-Lagrange

Le leggi della meccanica possono essere scritte a partire dal principio di
minima azione: se un oggetto in un tempo ta si trova in un punto xa, e
questo in tb deve trovarsi in xb, il principio di minima azione afferma che
esiste un S tale per cui:
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S =

∫ tb

ta

L

(
~x(t),

d~x(t)

dt
, t

)
dt = minimo

di conseguenza, di tutte le leggi orarie del moto possibili ~x(t), questa L è
quella relativa alla ~x(t) tale per cui l’integrale S sia minimo.

A questo punto, si proporrà un esempio di ciò. Si consideri il seguente
problema: 

F (y) =

∫ b

a

L

(
~x(t),

d~x(t)

dt
, t

)
dt

y(a) = ya

y(b) = yb

si supponga che questo problema sia già risolto: ossia, si immagini di aver
trovato una funzione, y, tale per cui questo funzionale sia minimo. Di con-
seguenza, si ha che:

y = y : F (y) = minimo

A questo punto, si vogliono studiare le proprietà di questa, utilizzando il
seguente stratagemma: si supponga di prendere una funzione y(t) 6= y(t), e
la si pensi in questo modo:

y(t) = y(t) + αη(t)

y(t) deve comunque avere senso, ossia essa deve comunque soddisfare i vin-
coli: y(a) = ya, y(b) = yb. Questo significa che η(a) = η(b) = 0: questa è
l’unica condizione che poniamo sulla funzione η; α ∈ R. A questo punto, si
valuti il funzionale sulla funzione y(t) appena definita:

F (y) = F (y + αη)

questo significa che, fissato η, si ha solo più dipendenza da α, che è uno
scalare; questo permette di definire come segue f(α):

f(α) = F (y + αη) =

∫ b

a

L

(
y + αη,

dy

dt
+ α

dη

dt
, t

)
dt

variando α, si avrà un diverso valore di questo integrale; tuttavia, è evidente
che, per α = 0, questo integrale sia minimo, dal momento che in questo caso
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si ha che y = y. Se si ha un minimo di f(α), dal momento che questa è una
funzione scalare, si avrà che la derivata rispetto ad α di f(α) dovrà essere
nulla: essendo un minimo, questo è un punto stazionario, dunque:

df(α)

dα

∣∣∣∣
α=0

= 0

A questo punto, si calcoli la derivata, e si ottenga:

d

dα

∫ b

a

L

(
y + αη,

dy

dt
+ α

dη

dt
, t

)
dt

sfruttando il teorema della Bontà Divina in forma forte, si può dire che
si può sempre commutare il segno di derivata e integrale1. Si ottiene dunque:

=

∫ b

a

d

dα
L

(
y + αη,

dy

dt
+ α

dη

dt
, t

)
dt

ora, si ha che:

dL

dα
=
∂L

∂y

∂(y + αη)

∂α
+
∂L

∂y′
∂(y′ + αη′)

∂α
=

=
∂L

∂y
η +

∂L

∂y′
η′

dove L = L
(
y + αη, dy

dt
+ αdη

dt
, t
)

= (y + αη, y′ + αη′, t). Quindi, si ha che:∫ b

a

{
∂L

∂y
η(t) +

∂L

∂y′
η′(t)

}
dt = 0

questa equazione deve essere verificata ∀η(t), dove η(t) deve solamente essere
nulla ai bordi. Si valuti ora questa espressione in α = 0: si ottiene∫ b

a

{
∂L

∂y
(y, y′, t)η(t) +

∂L

∂y′
(y, y′, t)η′(t)

}
dt = 0

1il teorema della Bontà Divina in forma forte dice che si può sempre scambiare il segno
di integrale e quello di limite, sommatoria, derivata, e cos̀ı via; quello in forma debole,
dice che quando non si può fare, viene fuori qualche boiata clamorosa e dunque ci si ferma
prima di proseguire; in verità servirebbero i teoremi di passaggio al limite di Teoria della
Misura, ma detto cos̀ı è molto più bello.
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come già detto, η(t) è una funzione qualsiasi, quindi deve sempre essere
verificata. Questo integrale dunque deve sempre annullarsi. A questo punto,
si vuole scrivere questa in modo più semplice da capire; per fare ciò, si effettui
l’integrazione per parti del secondo membro:

=

∫ b

a

∂L

∂y
(y, y′, t)η(t)dt−

∫ b

a

∂2L

∂y′∂t
(y, y′, t)η(t)dt+

∂L

∂y′
η(t)

∣∣∣∣b
a

= 0

ma η(a) = η(b) = 0, quindi:

=⇒
∫ b

a

{
∂L

∂y
(y, y′, t)− d

dt

∂L

∂y′
∂L

∂y
(y, y′, t)

}
η(t) dt = 0

dal momento che questa deve valere ∀η, questo è possibile solo se l’altro
termine è nullo; si ottiene dunque:

∂L

∂y
(y, y′, t)− d

dt

∂L

∂y′
(y, y′, t) = 0

questa è la equazione di Eulero-Lagrange, e rappresenta la soluzione del
problema variazionale appena affrontato come discuteremo tra breve.

2.2.1 Esempio applicativo: deduzione della legge di
Newton

A questo punto si applica questa teoria al fine di vedere come essa può essere
efficace. Si consideri come funzione y(t) (per come è stata introdotta nella
precedente sezione) la x(t), ossia la legge oraria di un moto. Dunque:

dx(t)

dt
= v(t)

dove v(t) sarà la velocità di un oggetto nello spazio. Dunque, si avrà una
lagrangiana funzione di x(t), di v(t), e di t:

L = L

(
x(t),

dx(t)

dt
, t

)
= L(x, v, t)

quindi, si vuole cercare la situazione tale per cui:∫ b

a

L(x, v, t) dt = minimo

28



A questo punto, applicando tutta la teoria precedentemente vista, è possibile
scrivere per questa situazione l’equazione di Eulero-Lagrange:

d

dt

[
∂L

∂v
(x, v, t)

]
=
∂L

∂x
(x, v, t)

ora dimostreremo che le equazioni della meccanica si possono ottenere min-
imizzando un certo funzionale. Per fare ciò, è necessario definire la la-
grangiana. Questa viene definita come differenza tra l’energia cinetica del
sistema e l’energia potenziale U(x):

L(x, v, t) =
1

2
mv2 − U(x)

S, ossia l’integrale della lagrangiana, viene detto azione:

S =

∫ b

a

L(x, v, t) dt

il principio di minima azione afferma che la legge oraria del moto è quella
che minimizza l’azione S. Dato dunque un oggetto che si muove nel campo di
potenziale U(x), la legge di minima azione è quella che minimizza l’integrale,
ossia che minimizza la differenza tra energia cinetica e potenziale. Partendo
dalle equazioni di Eulero-Lagrange, e minimizzando, si trovano le leggi di
Newton; infatti, si calcolino i vari termini dell’equazione di Eulero-Lagrange:

∂L

∂v
= mv

∂L

∂x
= −∂U

∂x

infatti, l’energia cinetica (1
2
mv2) non è funzione della posizione x, mentre

si ha che il potenziale U è funzione solo della posizione; tutto ciò è stato
dunque fatto derivando la lagrangiana rispetto a queste variabili. Dunque,
per l’equazione di Eulero-Lagrange, si ha che:

m
d2x

dt2
= −∂U

∂x

ossia:

m~a = ~F
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questa è semplicemente la legge di Newton!
In questo caso, questa formulazione è stata utilizzata al fine di ricavare

un risultato banale, dunque per ora non sembrerebbe molto interessante.
Tuttavia, lo è: questa formulazione è estremamente utile qualora si voglia
studiare il moto di oggetti vincolati; volendo studiare ciò con un ap-
proccio generale, si può arrivare a espressioni molto complicate; al contrario,
partendo da queste espressioni, è possibile ottenere una formulazione molto
più lineare e trovare risultati in modo molto più diretto. Un esempio di ciò
verrà proposto in seguito.

2.3 Formulazione Hamiltoniana della mecca-

nica classica

Abbiamo appena dimostrato che, definita una lagrangiana L(x, v, t), è stato
possibile, mediante le equazioni di Eulero-Lagrange, ottenere la legge di New-
ton. A questo punto però si vuole fornire una formulazione alternativa a tutto
ciò. Per fare ciò, si introduce una grandezza p, detta momento coniugato,
definita come la derivata rispetto alla velocità della lagrangiana:

∂L

∂v
(x, v, t) , p

di conseguenza, dal momento che, nello specifico caso della meccanica clas-
sica,

L(x, v, t) =
1

2
mv2 − U(x)

si ha che:

∂L

∂v
= p = mv

dunque, nel caso della meccanica classica, l’impulso coniugato p coincide
con la quantità di moto.

A questo punto, dal momento che la velocità v non sarà una grandezza
primaria, nell’ambito della formulazione hamiltoniana, si vuole ricavare la
velocità come funzione della posizione, del momento coniugato, e del tempo:

v = V(x, p, t)
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in generale, questa può essere un’espressione molto complicata; in questo
caso semplice, però, da quello che si è appena visto:

V(x, p, t) =
p

m

si riprenda a questo punto l’equazione di Eulero-Lagrange, e si sostituisca
quanto visto finora; si ha:

∂p

∂t
=
∂L

∂x

di conseguenza:

dp

dt
=
∂L

∂x
(x,V(x, p, t), t)

inoltre, si ha che la velocità può essere scritta come segue:

V(x, p, t) =
dx

dt

dunque, abbiamo spezzato le equazioni di Eulero-Lagrange in due equazioni:
dp

dt
=
∂L

∂x
(x,V(x, p, t), t)

dx

dt
= V(x, p, t)

dunque, sostituendo:

dp

dt
= −∂U

∂x
e

∂x

∂t
=

p

m

in questo caso, tutto è stato molto semplice, dal momento che l’espressione
di V(x, p, t) è molto semplice; in generale, però, questa può essere molto
più complicata. Tutti questi passaggi possono essere utilizzati al fine di
scrivere la meccanica mediante la formulazione di Hamilton: si definisce la
hamiltoniana come la funzione H(x, p, t):

H(x, p, t) = pV(x, p, t)− L(x,V(x, p, t), t)
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dove il secondo termine è la lagrangiana, definita nelle sezioni precedenti.
Data H, il sistema si può scrivere come segue: date x, t le variabili indipen-
denti:

∂H

∂x
= p

∂V
∂x
− ∂L

∂x
− ∂L

∂v

∂V
∂x

però:

∂L

∂v
= p

quindi, i due termini si compensano, e si ottiene:

∂H

∂x
= −∂L

∂x

invece, derivando H rispetto a p, si ottiene:

∂H

∂p
= V(x, p, t) + p

∂V
∂p
− ∂L

∂v

∂V
∂p

ma:

∂L

∂v
= p

di nuovo, e dunque:

∂H

∂p
= V(x, p, t)

effettuando queste sostituzioni, il sistema di equazioni di prima può essere
in generale scritto come: 

dx

dt
=
∂H

∂p
dp

dt
= −∂H

∂x

Questo, è un risultato generale: è vero per ogni lagrangiana e per ogni
V . Volendo analizzare il caso della meccanica classica, si trovano i risultati
appena visti. Il procedimento dunque da seguire è qui riportato.

1. Si parte da una lagrangiana.
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2. Dalla lagrangiana, mediante derivazione rispetto alla velocità, si arriva
a definire il momento p.

3. Si scrive la lagrangiana H note x,p, V , L.

4. A questo punto il sistema appena scritto è valido, e quindi la formu-
lazione è terminata.

2.3.1 Riscrittura delle equazioni di Eulero-Lagrange
mediante formulazione veloce

Si vuole a questo punto riscrivere un risultato precedentemente ottenuto,
utilizzando però una notazione più veloce; in questo modo, la formulazione
di problemi più complicati sarà comunque più immediata. Per chiarire questa
notazione con la precedente, è possibile confrontare i vari passaggi.

Si definisce l’azione S(x) come:

S(x) =

∫
L(x, x′, t)dt = min

invece di considerare x soluzione esatta, si considera x + δx, per ripetere il
ragionamento di prima:

S(x+ δx) =

∫
L(x+ δx, x′ + δx′, t)dt =

∫
L(x, x′, t)dt+

∫ (
∂L

∂x
δx+

∂L

∂x′
δx′
)

dt = S + δS

dove:

δS = S(x+ δx)− S(x) =

∫ b

a

(
∂L

∂x
δx+

∂L

∂x′
δx′
)

dt

a questo punto si effettua direttamente l’integrazione per parti:

=

∫ b

a

[
∂L

∂x
− d

dt

(
∂L

∂x′

)]
(δx)dt = 0

questo è il risultato ottenuto prima. Ora, questa notazione più snella verrà
adottata per risolvere problemi nuovi.
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2.3.2 Esempio di problema di minimizzazione in più
variabili

A questo punto, si vuole applicare questa notazione più snella a un problema
un po’ più complicato del precedente: si considererà ora un funzionale che
dipende da due funzioni. In questo caso nel dettaglio si hanno due funzioni:
x(t) e y(t); questo significa che la legge oraria riguarda un piano, o una
superficie. Di conseguenza:

S(x, y) =

∫ b

a

L(x, y, x′, y′, t) dt

a questo punto, si vuole trovare una coppia di funzioni (x, y) che minimizzi
l’azione S, dove in questo caso l’azione S è un funzionale di due funzioni.
Di conseguenza, si prendano due variabili indipendenti, δx e δy, tali da an-
nullarsi sugli estremi a e b:

δS =

∫ b

a

[
∂L

∂x
δx+

∂L

∂y
δy +

∂L

∂x′
δx′ +

∂L

∂y′

]
δy′dt

applicando l’integrazione per parti, questo diventa:

=

∫ b

a

(
∂L

∂x
− d

dt

∂L

∂x′

)
δxdt+

∫ b

a

(
∂L

∂y
− d

dt

∂L

∂y′

)
δydt = 0

per avere che questa sia uguale a zero, con δx e δy arbitrari, entrambi i
membri che moltiplicano δx e δy devono tendere a zero; di conseguenza,
date due funzioni, in questo caso si avranno ancora le equazioni di Eulero-
Lagrange, ma questa volta se ne avranno due, per giunta accoppiate tra loro:

d

dt

(
∂L

∂x′

)
=
∂L

∂x

d

dt

(
∂L

∂y′

)
=
∂L

∂y

questo significa che, se il problema di minimizzazione riguarda un funzionale
di due funzioni, allora si hanno due equazioni. Ovviamente, cos̀ı come il
formalismo lagrangiano può essere esteso, allo stesso modo può essere fatto
per quanto concerne il formalismo hamiltoniano; si definisce ancora una volta
il momento coniugato, per componenti:
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∂L

∂x′
= px

∂L

∂y′
= py

di conseguenza, facendo la stessa cosa fatta prima, si ottiene tutto come
prima:

x′ = Vx(x, y, px, py, t)

y′ = Vy(x, y, px, py, t)

di conseguenza, l’hamiltoniana sarà più complicata, ma nella stessa forma
della precedente:

H(x, y, px, py, t) = pxVx + pyVy − L(x, y,Vx,Vy, t)

e, infine, valgono le equazioni di Hamilton; riportando gli stessi ragionamenti:

∂x

∂t
=
∂H

∂px
∂y

∂t
=
∂H

∂py
∂px
∂t

= −∂H
∂x

∂py
∂t

= −∂H
∂y

Esempio

Per concludere questo argomento, si consideri ora un esempio. Si consideri:

L(~x,~v, t) =
1

2
mv2 − U(~x, t)

dove:

v = |~v|

p = |~p|

Si ha:
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~p =
∂L

∂~v
= m~v

quindi:

~v =
~p

m
quindi:

H(~x,~v, t) = ~p · ~p
m
−
(

1

2
m
p2

m2
− U(~x, t)

)
quindi:

H(~x,~v, t) = ~p · ~p
2m

+ U(~x, t)

Da qui:

d~x

dt
=
∂H

∂~p
=

~p

m
e

d~p

dt
= −∂H

∂~x
= −∂U

∂~x

2.4 Use of polar coordinates

Now, the hamiltonian formulation will be applied in order to find a partic-
ular kind of motion equation. Up to this moment, we only use cartesian
coordinates; in this situation, problems are very easy, therefore the use of
hamiltonian formulations may seem useless; in this section, a more compli-
cated example will be introduced. More in details, in this case we want to
study the motion of a particle on a plain, where the potential energy is only
function of r.

Knowing x and y components from a polar reference system (r, ϑ) is easy;
it is possible to use the following transformation:

x = r sinϑ

y = r cosϑ
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however, it is better to work on polar coordinates, avoiding the intro-
duction of conversions from polar to cartesian. It is possible to define the
velocity as:

v2 =

(
dr

dt

)2

+ r2

(
dϑ

dt

)2

this is some kind of Pitagora theorem: we add the square of the velocity
toward the radial direction r and the one toward the angular direction ϑ.
This means that:

vr =
dr

dt

vϑ = r
dϑ

dt

Now, let us look at the lagrangian of this problem:

L = L

(
r, ϑ,

dr

dt
,
dϑ

dt
, t

)
if we define as usual the lagrangian as kinetic energy minus potential energy,
we obtain:

L =
1

2
mv2 − U(r) =

1

2
m

[(
dr

dt

)2

+ r2

(
dϑ

dt

)2
]
− U(r)

now, we introduce a faster notation: to indicate the derivative of r with
respect to time, we use ṙ, and the same for ϑ:

ṙ =
dr

dt

ϑ̇ =
dϑ

dt

Therefore:

L(r, ϑ, ṙ, ϑ̇, t) =
1

2
m
(
ṙ2 + r2ϑ̇2

)
This problem has two variables, therefore we have two momenta:
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pr =
∂L

∂ṙ
= mṙ

pϑ =
∂L

∂ϑ̇
= mr2ϑ̇

we can therefore find the functions Vr and Vϑ inverting these expressions:

Vr = ṙ =
pr
m

Vϑ = ϑ̇ =
pϑ
mr2

This means that we can write the hamiltonian as:

H(r, ϑ, pr, pϑ, t) = prVr + pϑVϑ − L(r, ϑ, ṙ, ϑ̇, t) =

= prṙ + pϑϑ̇− L(r, ϑ, ṙ, ϑ̇, t) =

=
p2
r

m
+

p2
ϑ

mr2
−
[

1

2
m
p2
r

m2
+

1

2
mr2 p2

ϑ

m2r4
− U(r)

]
=

=
p2
r

2m
+

p2
ϑ

2mr2
+ U(r)

Now, from the hamiltonian, the deduction of the equation of this motion are
straightforward; in fact:

dr

dt
=
∂H

∂pr
=
pr
m

dϑ

dt
=
∂H

∂pϑ
=

pϑ
mr2

dpr
dt

= −∂H
∂r

= −∂U
∂r
− ∂p2

ϑ

mr3

dpϑ
dt

= −∂H
∂ϑ

= −∂U
∂ϑ

= 0

the last equation states that pϑ is a constant of the motion; this means
that, thanks to this equation, pϑ is a constant in every equation. There-
fore, because of the fact that pϑ is constant, we have two equations and two
unknowns:
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dr

dt
=
∂H

∂pr
=
pr
m

dpr
dt

= −∂U
∂r
− ∂p2

ϑ

mr3

once that we know r(t), so the radial position as a function of time, it is
possible to solve the remaining equation, and find:

dϑ

dt
=

pϑ
mr2

The use of the hamiltonian formulation allowed us to write the equations of
motions with a very easy notation, also in this case, where the use of polar
coordinates was recommended. Moreover, there is a very important simpli-
fication: in general, if the hamiltonian does not depend on one coordinate
(just like in this case, where there was no dependance on ϑ, the momentum
in that direction is constant.

2.5 Motion of a particle in an electromag-

netic field

2.5.1 Law of motion (reference result)

Up to this moment we have analyzed situations related to classical mechanics;
now, we are going to study the motion of a particle with charge q in an
electromagnetic field. In this situation, the particle will move following the
Lorentz’s force:

~F = q

(
~E − ~v

c
× ~B

)
instead of using the usual electromagnetic quantities ~E and ~B, we are going
to formulate this problem by means of a potential formulations; therefore,
let us define the scalar potential Φ and the vector potential ~A as:

~B = ∇× ~A

~E = −∇Φ− 1

c

∂ ~A

∂t
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The first equation states that the magnetic field can be written as the curl
of another vector field; this is possible because the field ~B is solenoidal,
which means that its divergence equals zero, and it is possible to prove that
this admits this representation. Similar considerations for the curl of ~E,
which equals zero in the electrostatic case, therefore this allows to write ~E
as a gradient of the scalar potential, plus another term (since in general the
electric field is not static). Given these two formulas, it is possible to rewrite
~F , using the following vector identity:

~v × (∇× ~A) = ∇(~v · ~A)− (~v · ∇) ~A

this can be found for instance by writing component-by-component the vec-
tor:

~v × (∇× ~A) =
∂

∂xi

(
3∑
j=1

vjAj

)
−

(
3∑
j=1

vj
∂

∂xj

)
Aj

then from where we can exploit the fact that ~v does not depend on position,
but only on time. Therefore, we can obtain that:

~F = m
d~v

dt
= q

[
−∇Φ− 1

c

∂ ~A

∂t
+∇

(
~v

c
· ~A
)
− 1

c
(~v · ∇) ~A

]
=

= −q
[
∇
(

Φ− ~v

c
· ~A
)]
− q

c

[
∂

∂t
+ ~v · ∇

]
~A

the term:

∂

∂t
+ ~v · ∇

is called lagrangian derivative; it evaluates, starting from a particular
point in space, the total derivative. In fact, this is also called total deriva-
tive or convective derivative.

At this point, we can move on, and obtain, applying the lagrangian deriva-
tive definition (this means simply grouping the second term!):

m
d~v

dt
= −q∇

(
Φ− ~v

c
· ~A
)
− q

c

d ~A

dt

now, we can move the last term at the left-hand side member of the equation:
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m
d~v

dt
+
q

c

d ~A

dt
= −q∇

(
Φ− ~v

c
· ~A
)

now, using the derivative:

d

dt

[
m~v +

q

c
~A
]

= −q∇
(

Φ− ~v

c
· ~A
)

This is the equation of the motion of a particle with mass m and charge q in
an electromagnetic field. This equation can be also deduced from a particular
form of the lagrangian.

2.5.2 Deduction of the equation of motion with the
hamiltonian formulation

Now, we are going to deduce the equation of motion starting from another
point. In an electrostatic field, we can write the lagrangian L(~x,~v, t) as:

L(~x,~v, t) =
1

2
mv2 − qΦ(~x)

this is trivial: it is simply the difference between the kinetic energy of the
particle and the potential energy. However, this is true only for the static
case; if the electric field and the magnetic field are not constant in time and
space, this lagrangian should be written as follows:

L(~x,~v, t) =
1

2
mv2 − qΦ(~x) +

q

c
~v · ~A

This is our starting point; now, we can substitute this in the Euler-Lagrange
equations, and obtain all our results. So, first of all, we recall the Euler-
Lagrange equations:

d

dt

(
∂L

∂~v

)
=
∂L

∂~x

we know that the momentum ~p can be evaluated as:

~p =
∂L

∂~v
= m~v +

q

c
~A
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(this is not immediate; in order to do this, it should be necessary to write by
components the lagrangian, so in xi, and then to perform the differentiation!).
In this case, ~p 6= m~v! About the right-hand side member:

∂L

∂~x
= −q∇Φ +

q

c
∇
(
~v · ~A

)
~p is exactly what is differentiated with respect to time in the left-hand side
of the motion equation found in the previous subsection, while ∂L

∂~x
is the

right-hand side; therefore, the lagrangian is correct.
As well as we have used the Euler-Lagrange formulation, we can also use

the Hamilton one. To this extent, the first step is to find V :

~v =
1

m

(
~p− q

c
~A
)

so:

H(~x, ~p, t) = ~p · ~v − L(~x,~v, t)

so:

H(~x, ~p, t) =
~p

m
·
(
~p− q

c
~A
)
−

1

2
m

(
~p− q

c
~A
)2

m2
− qΦ +

q

c

(
~p− q

c
~A
)

m
~A


now, with some arrangements:

H(~x, ~p, t) =
1

m

(
~p− q

c
~A
)
·
(
~p− q

c
~A
)
− m

2

(
~p− q

c
~A
)2

+ qΦ =

=
1

2m

[
~p− q

c
~A
]2

+ qΦ

now, by writing again everything by components, it is possible to write (we
write directly the result):

∂~x

∂t
=
∂H

∂~p
=

1

m

(
~p− q

c
~A
)

and (we write it well):
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−∂H
∂xi

=
1

m

(
~p− q

c
~A
)
· q

c

∂A

∂xi

which becomes:

−∂H
∂~x

=
1

m

(
~p− q

c
~A
)
· ∇ ~A

but: 1
m

(
~p− q

c
~A
)

= ~v; moreover, ~v is not dependent on position (~v and ~x are

independent variables), therefore the operator∇ does not act on it; therefore:

= ∇
(
~v · ~A

)
so:

∂~p

∂t
= −∂H

∂~x
= ∇

(
~v · ~A

)
− q∇Φ

and this shows that the lagrangian/hamiltonian formulations can be used
also in electromagnetics.

2.6 Minimization of a functional with con-

straints

We already discussed the problem of minimizing a functional, where some
boundary conditions are introduced; now, we are going to solve a more com-
plicated problem: the minimization of a functional where the only constraints
are not only put on boundary conditions, but also on some other functional.
For instance, let’s consider the following problem: given A, B two points,
we want the curve which connects the two points, with a specified area
beyond the curve. This means that: y(a), y(b) are fixed, but it is not
enough: we have to search the solution in the space of functions which have
the integral from a to b equal to some constant. A similar problem is the
determination of the curve which minimizes some energy functional (like the
lagrangian), where the length is fixed.

The determination of the minimum length is the minimization of the
following integral (we already proved it):

43



∫ b

a

√
1 +

(
dy

dx

)2

dx = minimum

but we have to restrict the research among all the curves which satisfy also
the following condition: ∫ b

a

y dx = S

where S is some fixed constant.
This was an example of problem. Now, we will focus on the general

formulation of this kind of problems, where one constraint is present. In
general, we want to minimize a functional:∫ b

a

L(y, y′, x) dx = minimum

where there is a constraint about one functional M(y, y′, x):∫ b

a

M(y, y′, x) dx = constant

How can we proceed? Well, to minimize the integral, what we had done
previously was writing a generic function y as:

y = y + δy = y + εη(x)

where y was the solution of the problem (the function which minimizes the
functional), η some function satisfying the constraints about y(a) and y(b).
Now, this is not enough: η(x) should satisfy also the constraint about the
functional M . Therefore, we have to add some degrees of freedom. In order
to operate in this direction, we can tale:

y = y + ε1η1(x) + ε2η2(x)

therefore, in this case:

δy = ε1η1(x) + ε2η2(x)

in this case, η1, η2 are two arbitrary functions, such that:
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η1(a) = η2(a) = η1(b) = η2(b) = 0

ε1 is an arbitrary coefficient; ε2 will be chosen in order to satisfy the integral
condition on M . Let us call the functional B(y) as the functional which
should be equal to a constant (the constraint functional):

B(y) =

∫ b

a

M(y, y′, x) dx = constant

therefore, since y is the solution of the problem (and this means that it keeps
also into account the constraint):

B(y) =

∫ b

a

M(y, y′, x) dx = constant

but we have a generic y:

B(y) = B(y + δy) = constant

this means that:

δB = 0

this should be found by applying the previous theory:

δB = B(y + δy)−B(y)

again, by taking the previous theory, it is straightforward to obtain:

δB =

∫ b

a

[
∂M

∂y
δy +

∂M

∂y′
d(δy)

dx

]
dx =

=

∫ b

a

[
∂M

∂y
− d

dx

∂M

∂y′

]
δy dx = 0

Now, we can substitute δy to this, and obtain:

δB = ε1

∫ b

a

[
∂M

∂y
− d

dx

∂M

∂y′

]
η1(x)dx+ ε2

∫ b

a

[
∂M

∂y
− d

dx

∂M

∂y′

]
η2(x)dx = 0
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Now, it is necessary to exploit the degree of freedom that we introduced: ε2;
this means that now we have to calculate ε2 in order to satisfy this constraint;
this can be easily done, isolating it:

ε2 = −ε1

∫ b
a

[
∂M
∂y
− d

dx
∂M
∂y′

]
η1(x)dx∫ b

a

[
∂M
∂y
− d

dx
∂M
∂y′

]
η2(x)dx

If we use the ε2 defined here, the constraint will be kept into account.
This is the starting point; now, we have to apply this result on the func-

tional that we are going to minimize. So, from the theory:

δA =

∫ b

a

[
∂L

∂y
− d

dt

∂L

∂y′

]
δydx = 0

the difference with respect to the previous case is that δy is not completely
arbitrary: now, δy has to keep into account the constraint on the functional
M . This can be done as follows:

δA = ε1

∫ b

a

[
∂L

∂y
− d

dt

∂L

∂y′

]
η1(x)dx+ ε2

∫ b

a

[
∂L

∂y
− d

dt

∂L

∂y′

]
η2(x)dx = 0

but we have proved that, in order to keep into account the constraint, ε2 has
a particular expression, which is going to be substituted here now:

ε1

∫ b

a

[
∂L

∂y
− d

dt

∂L

∂y′

]
η1(x)dx−ε1

∫ b
a

[
∂M
∂y
− d

dx
∂M
∂y′

]
η1(x)dx∫ b

a

[
∂M
∂y
− d

dx
∂M
∂y′

]
η2(x)dx

∫ b

a

[
∂L

∂y
− d

dt

∂L

∂y′

]
η2(x)dx = 0

therefore, the final expression will not depend on ε1 (which is arbitrary):∫ b
a

[
∂L
∂y
− d

dt
∂L
∂y′

]
η1(x)dx∫ b

a

[
∂M
∂y
− d

dx
∂M
∂y′

]
η1(x)dx

=

∫ b
a

[
∂L
∂y
− d

dt
∂L
∂y′

]
η2(x)dx∫ b

a

[
∂M
∂y
− d

dx
∂M
∂y′

]
η2(x)dx

This equation is satisfied only if the ratio between
[
∂L
∂y
− d

dx
∂L
∂y′

]
and

[
∂M
∂y
− d

dx
∂M
∂y′

]
equals a constant λ:[

∂L

∂y
− d

dx

∂L

∂y′

]
= λ

[
∂M

∂y
− d

dx

∂M

∂y′

]
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exploiting linearity, this condition can be re-written as:

∂

∂y
(L− λM) =

d

dx

[
∂

∂y′
(L− λM)

]
This equation is an Euler-Lagrange equation, if we consider a lagrangian L̃
defined as:

L̃ = L− λM

This is the origin of the method of the Lagrange multipliers: starting from
a lagrangian L which has to satisfy some constraint defined on a function M ,
it is possible to define another lagrangian, L̃, which do not have to satisfy
any constraint. λ is an additional degree of freedom: since two degrees of
freedom come from the solution of the Euler-Lagrange equation, which is a
second-order ODE, it is necessary a third degree of freedom, to comply also
with the integral constraint on M . This is λ.

Example

Now, we will propose a practical example of application of this method.
Given the functional to be minimized:∫ b

a

√
1 + (y′)2dx = minimum

with the integral constraint: ∫ b

a

y dx = S

where S is a constant, we want to solve this problem. First of all: M(y, y′, x) =
y, and L(y, y′, x′) =

√
1 + (y′)2; therefore, it is possible to write the non-

constrained lagrangian as:

L̃ =
√

1 + (y′)2 − λy

then, it is possible to write the Euler-Lagrange equation for this lagrangian:

∂L̃

∂y′
=

y′√
1 + (y′)2
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therefore: the Euler-Lagrange equation for this problem is

d

dx

[
y′√

1 + (y′)2

]
= −λ

this can be solved directly, integrating both members with respect to x:

y′√
1 + (y′)2

= µ− λx

where λ is the Lagrange multiplier, and µ is a constant which comes from
the integration. If we elevate to square both members, we obtain:

(y′)2

1 + (y′)2
= (µ− λx)2

so:

(y′)2 = (1 + (y′)2)(µ− λx)2

so:

(y′)2
[
1− (µ− λx)2

]
= (µ− λx)2

so:

(y′)2 =
(µ− λx)2

1− (µ− λx)2

so:

y′(x) = ± µ− λx√
1− (µ− λx)2

Therefore, finally:

y(x) = ±
∫

µ− λx√
1− (µ− λx)2

dx = K
√

1− (y − λx)2

where K is some constant. K, λ, µ should be determined in order to satisfy
the boundary conditions and the integral constraint of the problem: three
conditions, three degrees of freedom!

This is the equation of a circle: this says, anyway, that the circle is the
shortest curve which satisfies all the constraints (in fact, this comes from
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Euler-Lagrange, which is what guarantees that the functional is minimum;
since L was defined as the functional for the determination of the length of
the curve

√
1 + (y′)2, this is the research of a minimum length).

2.6.1 Extension to the case of multiple integral con-
straints

We introduced the method of Lagrange multipliers for one integral constraint,
so to solve a problem like:

∫ b

a

L(y, y′, x)dx = minimum∫ b

a

M(y, y′, x)dx = constant

What happens if there are multiple constraints? For instance, if the problem
is: 

∫ b

a

L(y, y′, x)dx = minimum∫ b

a

M(y, y′, x)dx = constant∫ b

a

N(y, y′, x)dx = constant

The extension is very easy: it is straightforward to prove that the lagrangian
L̃ has to be satisfied as:

L̃ = L− λM − µN

so, we have two extra degrees of freedom: λ and µ. In total, there are four
constants: two from the ODE, and two Lagrange multipliers, which can be
used to satisfy the four constraints ((y(a), y(b), the one on M and the one
on N).

Example of problem

We are going to introduce an example, related to Quantum Mechanics. Given
Ψ(x) a wave function satisfying the following problem:
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∫ +∞
−∞ x2Ψ2(x) dx∫ +∞
−∞ Ψ2(x) dx

= σ2

∫ +∞
−∞

(
dΨ(x)

dx

)2

dx∫ +∞
−∞ Ψ2(x) dx

= minimum

we want to find Ψ. The first equation is a constraint, while the second one is
the one which should be minimized. Ψ, which is the solution of the problem,
is the wave function which has a certain minimum momentum, with a given
position. We can notice that if Ψ is a solution, also CΨ, with C constant, is
a solution; therefore, it is possible to choose one between infinite solutions,
where each solution is equal to another, multiplied by a certain constant.
Therefore, let’s introduce the following normalization:∫ +∞

−∞
Ψ2(x) dx = 1

this is one example of condition which can be enforced in order to give a
certain value to the constant C. Keeping into account this condition, our
problem becomes: 

∫ +∞

−∞
x2Ψ2(x) dx = σ2

∫ +∞

−∞

(
dΨ(x)

dx

)2

dx = minimum∫ +∞

−∞
Ψ2(x) dx = 1

lim
x→±∞

Ψ(x) = 0

This is a problem where two integral constraints are defined, and one func-
tion has to be minimized. Then, a boundary condition for the problem has
been inserted. Now, let us apply the method of Lagrange multipliers: the
lagrangian of the problem is

L =

(
dΨ

dx

)2

− λΨ2 − µx2Ψ2
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therefore, starting from this it is possible to write the Euler-Lagrange equa-
tion:

d

dx

[
∂L

∂Ψ′

]
=
∂L

∂Ψ
so:

∂L

∂Ψ′
= 2Ψ′

and

∂L

∂Ψ
= −2λΨ− 2µx2Ψ

so:

d2Ψ

dx2
= −(λ+ µx2)Ψ

This equation has many solutions; a possible solution, which satisfies the
boundary condition of the problem and which is a stationary minimum of
the lagrangian integral, is:

Ψ(x) = Ae−kx
2

the Gaussian function. As we are going to prove, A and k are two constants,
just line λ and µ; actually, they are related to them. We have:

Ψ′(x) = −2kxAe−kx
2

and:

Ψ′′(x) = −(2k − 4k2x2)Ψ(x)

therefore:

λ = 2k µ = −4k2

It is possible to observe that this equation is close to the quantum harmonic
oscillator:

− ~2

2m

d2Ψ

dx2
+

1

2
k2Ψ = EΨ

where F = −kx: here, k is just the elastic constant of the spring.

51



2.6.2 Extension to a 3d problem

We are going to propose the solution of a 3d problem by means of this
formulation. We are going to minimize the following lagrangian:∫

D
= L(Φ,∇Φ, ~x)(d~x) = minimum

where D is some domain. The constraint, in this case, is that:

Φ(~x) = f(~x),∀~x ∈ ∂D

where f(~x) is a known function. This means that, in this case, we enforce the
values of the solution Φ(x) on a certain boundary D, to equal this function.
As usual, we have that:

Φ = Φ + δΦ

therefore, applying the usual theory, it is possible to obtain:

δ

(∫
D
L(Φ,∇Φ, ~x)(d~x)

)
= 0

which is:

∫
D

∂L

∂Φ
δΦ +

3∑
i=1

∂L

∂
(
∂Φ
∂xi

) [ ∂

∂xi
(δΦ)

] d~x

this is simply obtained considering, as usual, the derivative with respect to
~x as the derivative with respect to each i-th component of ~x or of Φ. In the
second term, the one inside the sum, L is differentiated with respect to the
sum of the derivatives of Φ with respect to each component. First of all, let
us define:

∂L

∂
(
∂Φ
∂xi

) = pi

therefore, the second term becomes:

~p · ∇(δΦ)

so, the integral, is:
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∫
D

{
∂L

∂Φ
δΦ + ~p · ∇(δΦ)

}
d~x

Now we can apply some kind of integration by parts to the ∇ operator; this
can be done by means of Gauss Theorem (Divergence Theorem), obtaining:

∫
D

{
∂L

∂Φ
δΦ + ~p · ∇(δΦ)

}
d~x =

∫
D

(
∂L

∂Φ
−∇ · ~p

)
δΦd~x+

∫
∂D
~p · n̂δΦ dσ

but we enforce (from the theory, see previous sections) ∆Φ to be zero on the
boundary, therefore we have:∫

D

(
∂L

∂Φ
−∇ · ~p

)
δΦ d~x = 0

which leads to:

∂L

∂Φ
= ∇ · ~p

this is the generalized Euler-Lagrange equation; this can be written, compo-
nent by component, as:

3∑
i=1

∂

∂xi

 ∂L

∂
(
∂Φ
∂xi

)
 =

∂L

∂Φ

Example

Let us consider:

L(φ,∇φ, ~x) =
1

2
α(~x) [∇φ]2 +

1

2
β(~x)φ2 − γ(~x) = 0

this is a quadratic function in the unknown; α, β, γ are known coefficients;
we can use the previously-introduced theory, and find:

∂L

∂φ
= βφ− γ

moreover:
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[∇φ]2 =

[
∂φ

∂x

]2

+

[
∂φ

∂y

]2

+

[
∂φ

∂z

]2

so:

∂L

∂
(
∂φ
∂x

) = α
∂

∂x

∂L

∂
(
∂φ
∂y

) = α
∂

∂y

∂L

∂
(
∂φ
∂z

) = α
∂

∂z

so:

∂

∂x

(
α
∂φ

∂x

)
+

∂

∂y

(
α
∂φ

∂y

)
+

∂

∂z

(
α
∂φ

∂z

)
= βφ− γ

which can be resumed as:

∇ · (α∇φ)− βφ+ γ = 0

this is the diffusion equation for neutrons, where the solution, φ, is called
neutron flux. In this context, β is the absorption function of neutrons, γ
is the external neutrons source, α is the diffusion coefficient. Then, this
equation can be solved by means of some finite differences scheme, or in
some other numerical way.

54


