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Preface and introduction

Preface and acknowledgements

This text comes from my lecture notes, taken during the course of Power
Electronics, held by Professor Franco Maddaleno during the academic year
2009/2010 at Politecnico di Torino.

I am writing this preface for some reasons: first of all I want to thank all
my colleagues and friends which supported me writing all this stuff, helping
me finding and correcting mistakes, or improving my work; I want to thank
Francesco Laviola, Salvatore Galfano, Elena Ruo Rui and Vittorio Gilli, who
gave me indications about some mistakes; very very very special thanks es-
pecially for Marco Elia, which gave me a huge help with all my mistakes:
thank you guys!

Something else: even if this is not the first text I have written in english,
every time I read it I see some mistakes, often caused by haste, and I have
no time to correct them (so sometimes I have to upgrade this text), given
many problems to my mates; first reason so is my desire to apologize with the
students that will read these notes, hoping that, despite of my poor english,
they will appreciate them.

One last note: unlike other text written by me, for this one I decided to
spend some more time, to introduce images and schematics; I spent a lot of
time searching for some methods or programs aimed to draw in LATEX, and
I have to thank again Francesco Laviola, for an advice he gave me: “latex-
draw”. This program has a GUI in which we can draw something, and obtain
instantly the PSTricks code, which can be integrated in the TEXdocument.
For electronic circuits, I prepared some templates for this software, templates
which will be eventually available in some site (when I will have time to or-
ganize and upload them!), in a sunny Saturday afternoon (so now you have
to thank me! :-P ).

Latexdraw is available at the following address:

http://latexdraw.sourceforge.net/
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Use it! It is awesome!
About other drawings, like mathematical plots, my idea is to use a tikz

application, which joins LATEXand gnuplot, but it is in a testing phase (about
me: no time to use it :-( ). We will see, next time.

So, now, I wish you all a good read.
Alberto Tibaldi
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Introduction to power electronics

When we talk about electronics, we can find at least two branches: signal
electronics, and power electronics. In this text we are interested to talk about
power electronics, and power electronics is efficiency: every time we worry
about efficiency we are talking about power. With power electronics we can
consider power in the order of magnitude of watts, kilowatts, megawatts, but
this does not care: this text will predominantly be focused on efficiency. Of
all the possible operations, the main one, in this course, will be the DC to
DC conversion (and some AC to DC).

Why is efficiency so important? Well, let’s consider for example a cell
phone: we want to maximize the time of a battery, and this is a problem of
efficiency, so of power electronics: we are not interested in power level, but
in the duration of the battery, and it depends on the efficiency of the DC-DC
conversion hidden inside the cell phone.

We are going to study power levels up to 1 kilowatt, but this is not
important: the important thing is to acquire some concepts.

Efficiency is usually expressed with η:

η ,
Pout

Pin

≤ 1

Let’s remark that η is always less or equal (but, in real world, all the
times less) then 1: we can not have, out of a system, more power then the
input one!

Efficiency is an important parameter: we have to increase it, for a number
of reasons; let’s find them! We can see that:

Pout = ηPin =⇒ Pin − Pout = dissipated power (heat) , Pdiss

So:

Pdiss = Pin (1 − η)

In other words:

Pout
1 − η

η
= Pdiss

This is very important because, if we have high efficiency, we have ad-
vantages! In fact, if η decreases, we have higher costs (because we need more
input power); if we have a limited power source, like a battery, we need high
efficiency, if we want that battery lasts longer!

From the last equation, if we have η ∼ 1, we have a very small numerator;
this reduces dissipated power, so heat! High temperature is bad because it
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can damage circuits, and we want to ensure the reliability of the circuit. A
standard rule is: if we increase the temperature, the lifetime of the system
decreases as a power of 2: with 10 ◦C we make lifetime decrease by a factor
of 2, 40 ◦C makes lifetime decrease of 24 = 16 times. This means that we
have to design better cooling systems, so heavier and/or larger objects, or
more fans.

Let’s consider this numerical example: if we want an output power of 100
W, with η = 90%, we have:

Pin =
100 W

0.9
= 111 W

So:

Pdiss = (111 − 100) W = 11 W

So, we have to remove 11 W. If efficiency is 80%, we have:

Pin =
100 W

0.8
= 125 W

So, we have 25 W of dissipated power; that’s a lot! More then the double!
We need a larger box, a heavier heatsink!

Components

Which components can we use, in power electronics? Well, we already said
that the main goal is to increase efficiency, so reduce losses; we need to avoid
components which dissipate too much power.

Capacitor and inductor are obviously good components: they are reac-

tive components, so, ideally, they don’t dissipate any energy. Diodes are a
little worse: they have a voltage drop on them (about 1 V, for power diodes),
but they can be used. What about transistors? Well, it depends: if we use
a transistor in linear zone or as a switch, from the power point of view it
changes everything! As switch it is ok, but in linear zone absolutely not! And
resistors? Well, their main job is to dissipate, power, so, for our purpose, we
can not use them! In power stage we will not introduce resistors (but in the
control stage, obviously, there are no problems!)

We will mainly use, in the power stages, capacitors, inductors, diodes,
switches (realized with transistors in saturation or interdiction zones).

Now, a question: can we use, to realize our power stage, just switches
and capacitors?
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bc

The answer is no: if we have two capacitors and a switch, supposing that
one has on it a voltage V (0) before closing the switch, and so a charge equal
to:

Q(0) = CV (0)

Where C is the value of the capacitance (and 0 is the time when we
evaluate voltage and charge). The other one is empty. After the transient,
in steady state, supposing that the two capacitances are equal, we have:

V1(∞) = V2(∞) =
V (0)

2

This means that voltage of the left capacitor is halved. What about
energy? Well, we have that, in the left capacitor, we have:

E(0) =
1

2
CV (0)2

The final energy will be:

E(∞) =
1

2
C

(

V (0)

2

)2

=
1

8
CV (0)2

This, for each capacitor; the total final energy will be the double of this:

Etot =
1

4
CV (0)2

so, half of the former energy. We have lost somewhere energy, even if
the switch is ideal (there are many interpretations: or irradiation, or small
leakage through parasite resistances which model a small non-ideality).

The only ways to charge a capacitor without any loss is via a current
source (so something which can maintain constant the current on it), or an
inductor.

Let’s remember that the differential equation which describes an inductor
is:

VL = L
diL

dt
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Let’s consider a simple example of solution of this differential equation,
which will be used soon: if we want constant voltage VL, we need iL to be a
ramp, a line. In this case, we have that:

diL

dt
= constant

So, slope will be equal to:

diL

dt
=

VL

L

This is the differential equation we will mainly use in this text.
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Chapter 1

Switch-mode power supplies

1.1 Introduction

We want to compare these supplies with linear power supplies. Their basic
schematic is:

b

b b
bc

bc

It has a 50 Hz transformer, some diode bridge to rectify the signal, and a
big capacitor in parallel of the output; most of the times there is a transistor
which controls the system.

Let’s see the advantages of switch-mode power supplies respect to these
ones:

• the first advantage is efficiency: switch-mode supplies have an efficiency
from 70% to 95% ;

• the linear regulator has an output voltage which is all the times less
then the input one: there is always a voltage drop, which permits to
maintain constant the output voltage value; switch-mode supplies has
no limitations of Vout versus Vin: we can obtain Vout > Vin, and also
opposite polarities;

• we can obtain isolation with switch-mode supplies in a better and sim-
pler way, because we don’t have any 50 Hz transformer, but high fre-
quency transformer (smaller and cheaper);
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• we can have multiple outputs;

• circuit is smaller, for two reasons: first, because high efficiency requires
less coolers; high frequency generally is associated with smaller com-
ponents, so the whole circuit will be smaller, and will cost less.

Switch-mode power supplies have also some drawbacks:

• they are complicated: we need at least two university courses to learn
them;

• they are very noisy;

• they are slower (they have a smaller bandwidth): if the load changes,
their output voltage changes slower respect to linear power supplies
one.

1.1.1 Introduction to basic topologies of switching-mode

converters

In this subsection we will only show slowly the main properties of the basic
switching topologies for converters; in the following sections, we will study
in details every one of them.

The two basic topologies are:

• buck: we have V0 < Vin;

• boost: we have V0 > Vin.

This is not true: it assumes to be positive voltages, so in modulus they
are true.

Buck and boost topologies are dual, and they are the basic topologies; this
means that every other topology derives from them. There are at least two
other main topologies (not basic, because derived from the previous ones):

• buck-boost: it is a very old circuit (formerly known as flyback);
someone analyzed this topology, and discovered that it is just a com-
bination of the first ones; it provides VinV0 < 0, but exists also a non-
opposite polarity version.

• boost-buck (mainly known as Čuk converter): the opposite.

Now, as already written, we will analyze quite in depth these four topolo-
gies.
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1.2 Buck converters

If we look a power electronics book, we can see that, theoretically, a buck
converter is something like this:

bc

R

LSW

D

bcbc

This is NOT the schematic of an actual buck converter: there are two
more components, which are mandatory if we want a working converter.

Let’s observe that L and R (where R is the load of our circuit) in series
form a filter (a low-pass filter); this is not the best we can do: we can use
a second order filter instead of a first order one, so introduce an output
capacitor, C0. This is the output stage of the buck converter.

R

L

C0

We have also and especially to introduce an input capacitor, also if we
are using a DC voltage supply: ideal supplies do not exist, because, in
real world, we have just real voltage sources! We need to introduce abso-

lutely an input capacitor Ci, which is also the first tool that can remove
electromagnetic emissions.

The final schematic of a real buck converter is this:

L

D R

SW

Cin

V0

C0

b b
A B

iL
iD

bc

Vin
iSW

b
C

bc bc

In order to do the analysis, we are going to introduce four assumptions,
four hypothesis:
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• low losses (so, to have ideal components): we will remove later this
assumption; we consider ideal diode (so, voltage drop equal to zero),
ideal inductors, capacitors (without parasites), and switches;

• we consider to have time constants very higher respect to the switching
period Tswitch (which will generally be called simply TSW);

• we consider constant the output voltage, so we don’t consider ripples;
in lab we can see the ripples, but now we are not going to introduce it,
in our analysis;

• just for the first analysis, we assume to have a cyclostationary state:
it is not exactly a steady state, because we don’t have a DC bias point,
but something similar: now, we are ignoring transients.

Another thing: we are assuming that switching frequency is constant:
this is an hypothesis we will use for most of our circuits (we will talk about
switching frequency later).

We have to distinguish two different working modes:

• CCM: iL must be different from zero for every time; this is called
Continuous Conduction Mode;

• DCM: there exists a time interval t when iL = 0; this is called Discon-

tinuous Conduction Mode.

Let’s analyze this circuit: we are considering a condition similar to steady
state (cyclostationary), so we have:

vL =

〈

L
diL

dt

〉

but L is a constant, and derivative is a linear operation, so we can do the
average of just iL:

= L
d〈iL〉
dt

= 0

but so we are differentiating an average, and an average is a number, so
we obtain zero! Using the same ideas, we can find that

iC = 0

A remark: there is just a situation where a capacitor has voltage on it
with non-zero DC: if it is broken!
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As first step, we want to analyze the current on the inductor, iL, versus
the time t:

iL =
1

L

∫ t

0

vL(τ)dτ + iL(0 )

This is a definition which obviously works, but that it is also hard to
study: this is for mathematicians! Let’s think like engineers: we assumed
that we have always constant voltages, so, like previously said, with constant
voltage on the inductor we have a current with ramp behaviour! It can be
an up-ramping, or a down-ramping. Let’s consider this convention:

L

D R

SW

Cin

V0

C0

b b
A B

iL
iD

bc

Vin
iSW

bcb
C

bc

The slope of the ramp will be

d〈iL〉
dt

=
VL

L

If we have non-ideal inductors, we have an exponential behaviour instead
of a ramp behaviour; this is not so important, because we consider short time
intervals, so we basically see a linear behaviour.

1.2.1 CCM analysis

In CCM, we have that current is never zero; this means that we will have a
Imax value, and a Imin value, both non-zero (and, for hypothesis, higher than
0):
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TON TOFF

TSW

Imin

Imax

t

iL

The initial value of the current through the inductor is not zero: we start
with an initial Imin, and, for hypothesis, with the switch closed; we call the
time when the switch is closed TON, and the one with the switch open TOFF;
obviously, we have that:

TSW = TON + TOFF

where TSW is the switching period (Tswitch).
We are studying a buck converter, so we have an output voltage less than

the input one; considering the previously showed convention, we have that,
during TON:

VL = Vin − V0

because the switch connects directly the input voltage source to the left
pin of the inductor, and the right one is always connected to the load, so to
the output. This means that the slope of the current is:

diL

dt
=

Vin − V0

L

After TON we obtain a current value equal to Imax.
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When the switch is open, the current through the inductance is continu-
ous: the current through an inductance in fact is a state variable, because:

EL =
1

2
Li2L

We can’t have energy steps, so also current steps! Another way to say it is
that the state variable keeps the memory of the previous states of the device,
because the device can keep energy! Talk about poles, energy, memory, is
the same thing.

Current so keeps flowing through the inductor: we can’t stop it (without
having huge voltage increases); the diode permits current to flow: this diode
is called free-wheeling. The diode is so mandatory, and must be mounted in
the correct way: if we forget it, the current on the inductance changes quickly,
so the voltage on the inductance increases, the switch goes in avalanche, and
probably the circuit get damaged. The diode behaves ideally as a short
circuit. During this time interval, TOFF, we have zero-voltage at the left pin
(in fact, we are ignoring the voltage drop on the diode), obtaining:

diL

dt
= −V0

L

After TOFF, so once ended a cycle TSW, we obtain again Imin; is it strange?
No! We are assuming to be in a cyclostationary state, so it is absolutely
normal!

If we impose the cyclostationary condition, we can say that:

Vin − V0

L
TON +

−V0

L
TOFF = 0

this, because, after a cycle, the current does not change at all! At the
end of a cycle, we have the same current! So:

VinTON − V0 (TON + TOFF) = 0

so

VinTON = V0TSW

So:

V0

Vin

=
TON

TSW

The ratio of the ON time respect to the full switching time is called duty

cycle, D (or duty ratio):
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D ,
TON

TSW

The ratio of V0 over Vin is called M :

M ,
V0

Vin

In the buck converter case, we have:

M = D

This is, obviously, a particular case.
Now, a question: why are we using an inductor L? Can’t we avoid it?

Well, we need it, because, if L = 0, we are dividing by zero an expression;
this can be said also with circuital observations, but the main reason is this
one.

If we remove the low-losses hypothesis, we have:

TON
Vin − VSW − V0

L
+

−VD − V0

L
TOFF = 0

Where VSW is the voltage drop on the switch, and VD the voltage drop
on the diode; the resulting expression is a function of the duty cycle D, of
the input voltage, and of the voltage drops on diode and switch. It is good
that D stills controls the output: we can control it, so also the output! Same
thing for Vin. What we can do is solve this equation, and, once designed the
value of D, increase it a little, in order to compensate the voltage drops.

Parameters

There are three parameters which can quantify the quality of the converters:

∂V0

∂Vin

∣

∣

∣

∣

D=constant

= Audio susceptibility

Its name derives from the theory of the old audio amplifiers.

∂V0

∂D
= Gain

This is the gain.

∂V0

∂I0

= Output resistance
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We are deriving a voltage respect to a current: this is, dimensionally, a
resistance: the output resistance.

There is another version of these parameters, useful for lab measurements:

∆V0

∆Vin
= Line regulation

∆V0

∆D
= (no name)

∆V0

∆I0
= Load regulation

They are not easy to calculate.
Let’s characterize the buck converter respect to the first three parameters:

∂V0

∂Vin

∣

∣

∣

∣

D=constant

= D = M

This is a result that we will find all the times: the audio susceptibility is
always equal to M , and, this time, also to D.

∂V0

∂D
= Vin

This is strange: we have a gain measured in volts, and which can be
variable: this is intuitive, because, if we change input voltage, we have to be
the same output voltage, so, obviously, gain changes! Ending:

∂V0

∂I0
= 0

In fact, the output voltage V0 is not function of the output current I0.
A remark: this topology is one of the most versatile ones! It can work at

kilowatts, or megawatts! It is in the cell phones and in personal calculator
power supplies, so it is very very versatile!

1.2.2 Circuital analysis

Let’s consider this circuit, and all of its quantities (currents and voltages):

L

D R

SW

Cin

V0

C0

b b
A B

iL
iD

bc

Vin
iSW

b
C

bc bc
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The current on the inductor, iL, as already written, has this graph:

TON TOFF

TSW

Imin

Imax

t

ISW
ID

What is I0 ? Well, we know that, in the output node, we can use KCL
(Kirchhoff Current Law), which says that:

∑

n∈all branches

in = 0

Currents are functions of time; what we can do is average both mem-
bers: the right term is the average of 0, which is 0; for the left member, we
remember that average is a linear operator, so that:

∑

n

in =
∑

n

in

Now: what is the average of one cycle? Simply, the DC component!
In other words, the average of a variable signal is its Fourier transform,
evaluated in 0 Hz! In the hypothesis, we said that V0 has no ripple, so:

I0 =
V0

R
I0, so, is a DC, because output voltage is constant! We know that, through

the capacitor (if it is not broken), DC is zero, so:
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iL = I0

In other words, I0 is equal to the average value of the current through
the inductor.

Now, let’s consider the currents on the switch and on the diode: ISW is
the current on the switch, and we know that, ideally, on the switch there is
current only when it is closed; when it is closed, all the inductor’s current
goes in the switch, so we have, for the TON interval, that ISW = iL; in this
period, ID, so the current inside the diode, is zero. During TOFF, we have
the dual condition: on the switch there is no current, and so all iL goes into
the diode. We have a graph like this one:

TON TOFF

TSW

Imin

Imax

t

ISW
ID

We have three more variables to consider; the first one is the voltage on
the node A:
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TON TOFF

TSW

t

VA

Vin

During TON, we have that the voltage on A is equal to Vin; this means
that, on the ideal diode, we have a breakdown voltage equal to Vin. During
TOFF, we consider negligible the voltage drop on the diode, and obtain VA = 0
V.

Still two variables: the currents into the two capacitors. About the cur-
rent on C0, applying KCL on the output node, we have that:

iC0
= iL − I0

in fact, we have just the ripple current, into the output capacitor!

t

iC0

Ipeak
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About the current on the input capacitor, we have to introduce some
more assumptions: let’s consider the following DC source line:

bc

If we have this circuit, for high frequency components, there are two
paths: the inductance and Ci: we suppose that all the current goes into the
input capacitor, because the inductance must work as a filter. Obviously,
a capacitor can not have a DC component, so we have the current into the
switch, without its DC component:

t

iCin

Ipeak

The upper and lower areas must be equal, because the average must be
zero.

We have the graphs, but now we need to put numbers in them, in order
to understand how much the components are stressed. Let’s see: when the
switch is closed, the diode has a reverse voltage exactly equal to Vin. What
we need is to work with RMS (Root Mean Square) currents: this is impor-
tant because RMS is strictly connected to ohmic dissipations: if we have
dissipations, we have RMS currents, and viceversa. We can study the critical
components from the RMS currents point of view, in order to understand
how much are they stressed (capacitors, inductors, transistors, which have
parasite parameters, so ohmic losses).
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In this subsection we want to learn some tricks, in order to calculate
quickly the RMS value of some expression. There are known expressions,
like the triangular one (which is important for our analysis):

IRMS, triangle =
Ipeak,triangle√

3

The problem is that we have more exotic wave shapes, like this one:

TON TOFF

TSW

Imin

Imax

t

ISW
ID

Now, when we have to calculate the RMS value of this wave, we have at
least three choices:

• use the RMS definition: RMS means Root Mean Square, so: first op-
eration is the square one: we take the signal and square it; then, we
mean it, so we calculate its average, with its integral; then, root: we
calculate the square root of the average integral.

• read on a textbook (or in Internet) the formula, which is very compli-
cated:

IRMS =

√

D
I2
min + IminImax + I2

max

3
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• consider, instead of this trapezoidal waveform, an approximated one: I
can flat the top, using the average of its value:

TON TOFF

TSW

Imin

t

I0

Imax

Now:

IRMS = Iflat

√
D

where

Iflat =
Imax + Imin

2

(this can be calculated by using the integral of the square waveform,
which is very simple).

Now, let’s apply it on our cases: we already know Iflat, because:

Iflat = I0

This can be used in both ISW,RMS and ID,RMS: in fact, remembering that
we have current on the switch during the positive duty cycle, the time when
the switch is closed (which is associated to the D of the circuit), we have:
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ISW,RMS = I0

√
D

ID,RMS = I0

√
1 − D

Now, let’s calculate the RMS current on the output capacitor, C0: if we
use the traditional way, we have to square the triangular function (obtaining
parabolas), integrating, and rooting.

We can use the result which says (basing on the Archimede’s theorem)
that:

I2
C0,RMS =

Base × Height

3

Now: base is 1 cycle, so 1 (in other words, D + (1 − D) = 1); height is
I2
pk, we obtain:

IC0,RMS =
Ipk√

3

Now, we have to calculate the last value: the RMS value of iL. What
can we do? Well, the first idea is: may I use KCL on RMS values? No!
Absolutely no! RMS values are related to a square of a quantity, and, even
if we do the square root, we have just positive values! This says us that:

∑

n

iRMS 6= 0

This can be explained in another way: those currents are in fact corre-
lated: given a and b two currents:

(a + b)2 = a2 + b2 + 2ab

The cross-term is a correlation term. There is just one condition which
guarantees that we can use KCL on RMS values: if the terms are uncorre-
lated.

How can we use this observation? Well, we can see that iL is a current
which has a DC component and an AC component: the constant I0, and the
triangular component. If a waveform has an AC and a DC part, the two
parts are uncorrelated! In fact:

iL = IDC + IAC

Let’s apply the RMS definition on it: the first step was square, so:
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(IDC + IAC)2 = I2
DC + I2

AC + 2IDCIAC

now, we have to mean, and we have three contributes: the integral of a
constant, the integral of a variable term, and the integral of the cross-term.
As we know, an AC term (like IAC) has the average equal to zero; if we
multiply a constant (IDC) for an AC term, we increase the amplitude of the
oscillations of the AC term, but keep constant the average, which remains
zero! So, in this case:

I2
RMS = I2

DC + I2
AC

Let’s apply it to our case:

I2
L,RMS = I2

0 +
I2
peak

3

where Ipeak is the distance between the peak and I0.
Usually, let’s note that

I0 �
I2
pk

3
so:

IL,RMS =

√

I2
0 +

I2
peak

3
∼ I0,RMS = I0

We just need, with good approximation, the I0 term.
Let’s consider a numerical example: if I0 = 1 A, with a ripple of Ipeak =

0.3 A, we have:

I2
L,RMS = (1 A)2 +

(0.3 A)2

3
= 1 A2 + 0.03 A2 = 1.03 A2

This means, square-rooting, that:

IL,RMS = 1, 015 A

remembering that Taylor expansion of the square root is

(1 + x)
1
2 ∼ 1 +

1

2
x

Who cares of 15 mA on 1 A ? No one!
Another way to see this idea, is this one: AC and DC components are

orthogonal in Hilbert spaces; we have that the resulting current is very close
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to one of the vector of the base of this space (which are the DC and AC
components). The diagonal vector, resulting from the linear combination of
the two ones, is almost equal to the vertical base element.

In order to design this stuff, we have to calculate some other values: we
also need average values: in order to calculate them, we have to take the
area under the curves, and spread them (like Nutella) on one cycle; as we
can see from the graphs, we can calculate the average current as the area of
a trapeze:

ISW,AVE =
Imax + Imin

2
D

but we have that:

Imax + Imin

2
= I0

so

ISW,AVE = I0D

Same thing for the average diode current:

ID,AVE = I0(1 − D)

Why are we using these averages? Why do we need them? Well they
are important (as we will see soon) for diodes, BJTs, IGBTs, because the
dissipated power Pdiss on them (approximately) equals:

Pdiss = VDID,AVE
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this, for a diode D. This is not important for MOS transistors, because
it behaves like a resistor, not like a diode. Same thing for switches: in MOS
switches we don’t need it! Our circuit will be realized like this one:

L

D R

V0
Vin

C0

b b b
AC B

iL
iD

b

Cin

bc

bc

In this schematic we have the node C; if we remember that in a (working)
capacitor there is no DC, we have that, for KCL, all the average current of
the switch must be equal to the input current Iin, coming from the supply of
the converter; this is normal: the supply gives (approximately) a DC, so we
have that:

ISW,AVE = Iin

so, the input power of the converter is just equal to:

Pin = VinIin = VinI0D

what about output power? Well, trivially, we have:

P0 = V0I0 = VinI0D

So, input power and output power are equal; this seems like we have 100%
efficiency (but let’s remember that our circuit is non-ideal).

Now: we have calculated the average value of the switch (and diode)
current in order to calculate the RMS value on the input capacitor. We
already said that it is the most stressed, but we have to quantify the stress on
it, in order to understand how to design it. We know that the current on the
input capacitor Cin equals the switch current, less than the DC component.
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iCin

Ipeak

Can we calculate the RMS value of this graph? Obviously yes, but it can
be hard to do: with the definition of RMS value we could calculate it, but
we want to do easy things! Remembering the KCL for RMS values (which
is not really a KCL, but only a sort of), we can say that:

I2
Cin,RMS = I2

SW,RMS − I2
SW,AVE

Of all the RMS value of the switch’s current, we take out the average
value (which is not into the capacitor), obtaining just the RMS value (RMS
value of an average equals the average, because an average is a constant
function). So:

= I2
0D − I2

0D2 = I2
0

(

D − D2
)

the following RMS value quantifies the stress on the input capacitor:

ICin,RMS = I0

√
D − D2

If we use basic Calculus, we can calculate that the maximum of this
function is:

ICin,RMS,max =
I0

2
, for D = 0.5

this is a very important fact.
Let’s compare this stress with the output capacitor stress; we know that:
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iC0

Ipeak

Ipk =
Imax − Imin

2
� I0

in fact, the peak is very little respect to the average of the current (which
equals the output current): this is an hypothesis of our problem. We know
that:

IC0,RMS =
Ipk√

3

This capacitor is less stressed than the input one: it is stressed by a
function of I0, which is very greater respect to the peak value. This occurs
because the output capacitor is connected to an inductor: near to an inductor
the capacitor has better life, because the inductor can make the current be
quite constant (with little ripple); near to a switch, ripple is generally much
more higher, so also the stress.

Maximum and minimum of inductor currents

Now, we still have to find the values of Imax and Imin; as usual, the circuit
and the graph of inductor current are:

We already know that:

I0 =
Imax + Imin

2

We have two unknowns, one equation; the second equation can be some-
thing like this one: knowing the slope, and the duration, we can say that the
difference between the currents equals the slope, times the duration:

Imax − Imin =
V0

L
(1 − D)TSW =

V0

L

1 − D

fSW
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So, now we have two equations in two unknowns: this is a system! Re-
membering Ohm’s law applied on I0, we have:

{

V0

R
= Imax+Imin

2

Imax − Imin = V0

L
1−D
fSW

Let’s add the two equations: we can obtain (dividing by two):

Imax =
V0

R
+

V0

2LfSW
(1 − D)

Subtracting, we obtain:

Imin =
V0

R
− V0

2LfSW

(1 − D)

Why do we need those two values? Well, Imax is the peak of the current
flowing through all the components! This means that it is related to the
peak-stress: we already calculated what happens for average stress (related
to RMS value). For the inductor, the peak current is what the inductor
dissipates in heat, due to the resistance of the wire which forms the inductor;
it is related to the magnetic design of the inductance: the magnetic flux
which is inducted into the inductor is related to the R of the inductor, and
if we want to find the maximum flux of magnetic field inducted, we need
the Ipeak value, in order to stay away from the saturation of the magnetic
core. What about Imin ? Imin is useful for a different reason: if I make my
load lighter, so increase the load resistance, output voltage remains constant,
but output current decreases; the output current equals the average inductor
current, and ripple is constant (ripple depends just on duty cycle, but not
on load resistance); if the load increases too much, Imin touches the zero.

TON TOFF

TSW

t

iL

Tidle

Ipeak
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When current becomes zero, the inductor becomes like a short circuit to
V0, the diode opens, and the left side of the inductance hangs on nothing, on
an open circuit; this because the diode is reverse biased. Current stays to
zero for a while, so comes up, comes down, stays again to zero, and this will
be the cycle.

This waveform is different respect to the previous one: we moved from
CCM to DCM; the boundary condition from CCM to DCM is Imin = 0: when
we push Imin to zero, we make our circuit work in DCM.

If we want to design a buck converter in CCM mode, we have to use this
idea:

Imin =
V0

R
− V0

2LfSW

(1 − D) = 0

=⇒ 1

R
=

1 − D

2LfSW

This is the only equation we need to design a buck converter in CCM:
this equation says that we have, as degrees of freedom, L and fSW: L is the
main degree of freedom we have, because sometimes we have boundaries on
fSW. Let’s study advantages and drawbacks of high switching frequency:

• if the switching frequency goes up, we can get smaller inductance val-
ues, and even better performances (high-frequency inductors are bet-
ter!); lower switching frequency means larger values of L, and larger
size of inductors;

• with higher frequencies we have higher losses: every cycle we lose some
energy, so, if we increase the number of cycles, we increase losses;

• in general, one extra condition says that higher the power, lower the

frequency : larger converters mean larger components: a larger inductor
has more parasitic elements, so less bandwidth; if we want to handle
high power values, we need larger components; in order to give just an
idea about the quantities, we can say that:

– around 1 kW, switching frequencies can go from 20 kHz to 100 kHz
(not under 20 kHz: under 20 kHz we have acoustic frequencies,
and acoustic noise produced by our converter: we can hear these
noise components!);

– around 100 W, switching frequencies go from 100 kHz to 500 kHz;
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– around 10 W, switching frequencies go from 100 kHz to 1 MHz
(but we need different schematics; by the way, at this power level,
components are already small, so we don’t need to push up too
much our frequency).

First thing, to design, is to choose a switching frequency value; in some
cases, we have to take pre-defined switching frequencies. For example, if
we have to design a switching converter for a TV, if we have to choose a
frequency, we want to take a multiple of the display rate: our converter leaks
some noise, which goes to the cathodic ray tube; if our noise is fixed, no
problem; if our noise moves around the screen, we have to take account of
this idea.

Now: chosen the switching frequency with some common sense, the only
component we have to design is the inductor! So, we have to find the value
of the inductance, given the switching frequency. We have that:

1

R
=

1 − D

2fSWL
=⇒ L = R

1 − D

2fSW

This is the design equation for the buck converter. The L value which
satisfies this relation is called Lcritical: the word critical (from the ancient
greek κ%ινω, divide), means separating point; this means, in this case, the
boundary from the DCM to the CCM case. If we want to design in CCM:

L > Lcritical

A remark: Lcritical is not a well-defined values, because it depends on D
and on R: they are not under our control, so we have to calculate the largest

value of critical inductance (starting from the worst value of D and R): max-
imum input voltage and minimum load weight correspond to minimum duty
cycle and maximum resistance. We have to take also account of the toler-
ances on the switching frequency: it is realized with non-ideal components
(like capacitances and inductors for an oscillator).

Sometimes can happen that the load is disconnected: in this situation, we
need an infinite L, in order to remains in CCM; we can have specifications
about the load, or about the currents: this means that we have to design
the converter in order to remain in CCM with common sense. What we can
do is, given the maximum output current, consider as minimum current the
10%, 15%, 20% or something similar, and under this level go to DCM: we
can’t do anything better with our specifications!

Now, let’s consider this fact: we approach DCM when the load resistance
goes to maximum value; this rule holds for any converter: when we remove
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load, we impose DCM. There is a second fact: when input voltage goes up,
current decreases, and so we approach DCM; vice versa, any converter closed
on short circuit works in CCM.

CCM and DCM are also called with other names: CCM is also called
heavy mode, because related to high current (so heavy loads); DCM is also
called light mode.

Buck word is related to money ; another name is step-down: given an
input voltage, we have, out of it, a lower one; another name, for the same
reason, is chopper (but this is used from electrotechnicians).

1.2.3 DCM analysis

Let’s start to perform a DCM analysis of the buck converter; now our iL has
a different behaviour, respect to the previous one:

TON TOFF

TSW

t

iL

Tidle

Ipeak

now, there are three times instead of two: TON (or T1), TOFF (or T2), Tidle

(or T3): now current ends before the end of the cycle, so T1 is almost equal
to the previous TON, but the T2 is not equal to the CCM TOFF: there is a
time when current is zero. We have that:

TSW = T1 + T2 + T3

Now, what happens in node A ? Well, if we plot the voltage, we have
something like this:
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TON TOFF

TSW

t

VA

Tidle

VA

Vin

V0

During T1 we have Vin, during T2 the voltage drop on the diode (which
is considered equal to zero), and on T3 something new: if the current on the
inductor is zero, we have that it behaves like a short circuit, which connects
the output voltage to the node A; this is a step-down converter, so we
suppose that V0 < Vin.

Now, if we use an equivalence, we can model the output with a generic
low-pass filter: as any other component it is short-sighted: he doesn’t know
what is entering: out of it it will produce the average value of what we put
in it; in CCM case, we had:
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TON TOFF

TSW

t

VA

Vin

We had this waveform, and now we have another one; the L − C0 block
does the average of VA, so what we have now, with the same D (duty cycle),
is a higher voltage respect to the previous case: our actual waveform has
higher average value, so, on the load, we will have higher output voltage:

MCCM(D) < MDCM(D)

Where M is defined as:

M =
V0

Vin

So: the topology is the same of the last time.
We have that positive slope and negative slope are:

diL

dt

∣

∣

∣

∣

/

=
Vin − V0

L

diL

dt

∣

∣

∣

∣

\

=
−V0

L

we have that:

35



Vin − V0

L
T1 +

−V0

L
T2 = 0

and:

V0

Vin
=

T1

T1 + T2

where this fraction is not the duty cycle: TSW 6= T1 + T2.
We need another equation; one way to obtain it is to look at the output

current (there is another way, which will be introduced later): the average
current in the capacitor as usually is zero, so we can use the KCL in node A
and obtain that iL is the area of the triangle spread (like Nutella!) through
TSW:

I0 =
V0

R
= iL =

Imax(T1 + T2)

2TSW

Imax now is quite easy to find: we know that the minimum current is zero,
so we can use T1 and see that:

Imax = T1
Vin − V0

L

substituting:

I0 = T1
Vin − V0

L

T1 + T2

2TSW

now, let’s use some algebra: we know that, from the first formula:

T1 + T2 = T1
Vin

V0

if we substitute, we obtain:

Vin − V0

L
T1

T1Vin

V0

1

2TSW
=

V0

R

let’s clean this equation:

R

2LTSW
T 2

1

Vin

V0

Vin − V0

V0
= 1

but now we have that:

T1

TSW
= D
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now, so, let’s multiply and divide by TSW, and obtain:

R
D2

2LfSW

[

Vin

V0

(

Vin

V0
− 1

)]

= 1

in these expressions, we have:

Vin

V0
=

1

M
, α

so:

RD2

2LfSW
[α(α − 1)] = 1 =⇒ α2 − α − 2LfSW

RD2
= 0

this is a second order equation, and is quite different from the CCM: in
this expression we have D, but also L, fSW, and the load R: if we change
the load, we change the output voltage! The solution of this equation is:

α =
1 ±

√

1 + 8LfSW

RD2

2
=

1

M

so, inverting:

M =
2

1 +
√

1 + 8LfSW

RD2

< 1

we have to take just the positive solution, because this number has to be
less than 1 (in order to have a buck converter, M can not be greater than
1). If we calculate the limit, we can see that, if D → 0, M → 0: obviously,
if we open the switch, output voltage goes to zero, because there is no more
input! Let’s study the main parameters of this converter, in DCM mode:

• about the output resistance, we have that:

∂V0

∂I0
6= 0

this is non-zero, because output current depends on the load: if we
change the load, we have that output voltage changes, so output resis-
tance is not zero. This means that the equivalent circuit for the output
stage of the DCM buck converter is something like this:
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b

output resistance is not zero, so the load creates a voltage divider;

• as usual, the audio susceptibility is:

∂V0

∂Vin

= M

• about the gain, it is quite complicated to calculate (we have to differen-
tiate respect to D, and it is useless), but we have an information: gain
changes with R, so if we change the load, we change the gain. Like
previously, the dimension of the gain is voltage.

Now, let’s graph M(D) in CCM and DCM:

MCCM(D) MDCM(D)

D D

In CCM we have that the derivative of M by D is constant: the curve
is a line, so this is obvious; very nice: our gain does not change! In DCM,
the situation is much more complicated: we don’t have M = D, and we have
many possibilities, because in DCM there are many parameters which can
change: if we change R we change M ; the result is that MDCM(D) has many
paths.

There is a common characteristic in all DCM paths: when we increase
D, we tend to go from DCM to CCM: this because if we increase the duty
cycle, we decrease the input voltage, so we get away from DCM.

Let’s do another comparison of CCM and DCM with the same average
current:
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If we design a CCM converter, the inductor current has just a little ripple,
around I0; in DCM we have to draw a triangle of the same area of the CCM
one (the average is equal), so we have a ramp with very high slope; the
peak will be very high, and so also RMS value. it is better to use CCM,
because it has lower maximum value, and lower RMS values: with CCM our
components are less stressed.

When we design a CCM component, we don’t have to care about the
DCM effect: sometimes we will go in DCM, but when it happens, the aver-
age currents will be very different, so also the peaks related to the average
currents: DCM is not a problem, from this point of view.

Using the previously seen tricks, we can calculate again the RMS charac-
teristics, and see that:

IRMS =

√

T1+T2

TSW

3
Ipeak

If we know the value of the peak current, and the normalized time (like
duty cycle D), we can calculate each value; we know that the current on
the inductor is the whole current, and switch and diode are respectively
the raising and the falling parts. We can so calculate the stresses of the
capacitors, like previously done, with the same ideas.

1.2.4 Alternative schematics for buck converters

Now we are going to show some alternative schematics for buck converters.
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Alternative schematic: components on the return

The first idea can be the following one:

D R

SW

Cin

V0

C0

b b
B

bc

Vin

bbc

L
bc

Instead of using the standard topology, we can put both switches and
inductor in the lower side of the circuit: this is possible because currents,
with this idea, follow the same path; this is not very common because, with
this graph, input and output positive point are the same (there is a short
circuit). The positive voltage is the same all the times, the negative changes,
so if we take the output voltage like previously done (from the same pins) the
result is the same; if our load is grounded, and also the left part is grounded,
maybe to chassis, and our input source is to ground for some other reason,
we have a short circuit.

If we use negative input voltage, we can think about something like this:

D RCin
C0

b b
B

bc

Vin

bbc

L

V1

V2

SW
bc

Let’s remember: we don’t want to have the switch on one side and the
inductor on the other one, because we are not interested to just the differen-
tial voltage: output voltage is exactly the same of the previous cases, but we
are interested about both differential and common mode voltages, which is
very important for electromagnetic compatibility: if we measure V1 referred
to ground, we have that V1 will be equal to zero, when the switch is closed
(in fact, when the switch is closed, the output node is connected to ground
via the switch, remembering that now the reference of the supply voltage is
in the upper part of the circuit); the capacitor makes voltage be constant
on it, so V2 will go down and up every time V1 changes its value. This is a
source of electromagnetic noise.
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High-current schematics

Now: we know that, with new technologies, supply voltages are decreasing,
and supply current increasing: in a personal calculator we can have core
voltages Vcore of about 1.1 V, and 90 amps; given a 3.3 V voltage source, we
can use a step-down (buck) converter to obtain from the 3.3 V a voltage of
1.1 V; the basic schematic is this one:

L

D R

SW

Cin

V0

C0

b b
A B

iL
iD

bc

Vin
iSW

bcb
C

bc

when the diode conducts it can have also 90 A of current inside it! Now,
let’s do some calculations: if we have to obtain 1.1 V from 3.3 V, we have to
design M like:

M =
1.1

3.3
=

1

3

this means that our duty cycle must be equal to:

D = M =
1

3

What does it means? Well, for 1
3

of the time we will have our current on
the switch, and for 2

3
of the time on the diode; we have something like this:

3.3 V

-0.6 V

VA

t
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The negative part of this graph generates a lot of losses. Supposing that
our diode is a Schottky power diode, with a voltage drop equal to 0.6 V, we
have, as dissipated power:

Pdiss = 90 A × 0.6 V × 2

3
= 36 W

so, just on the diode, we are wasting 36 watts! That’s a lot of power!
What can we do, to avoid all this power dissipation? Well, we have

to remove the diode, and to substitute it with something with a similar
behaviour: another MOS transistor, working as switch: it has a very low
voltage drop! We can’t use a bipolar transistor because: npn are absolutely
forbidden because BJT are unidirectional devices, so an npn permits currents
to flow just from the collector to the emitter; our idea so can be to put a
pnp transistor, but there is a problem: surely, if the BJT-switch is closed,
current flows in the desired way; if BJT behaves as an open switch, we have
that the collector is connected to a high voltage, and so that base-collector
is directly biased; the base-emitter junction can not have more that 5 or 6
volt on it, so it can’t be use as open circuit. If we put an IGBT instead of
a BJT, we have similar problems: also IGBT is unidirectional, but there are
some devices with diode included with the main device; our problems come
back: a diode has a voltage drop, so wastes power.

L

R

SW

Cin

V0

C0

b b
A B

bc

Vin

b
C

bc

S1

S2bc
bc

This MOS transistor introduces another diode, complimentary, which is
perfect for our purposes: it lets current flow from bottom to up; it has low
voltage drop and, if it is driven with a correct piloting signal, it can behave
like the diode. The idea is to have two signals like these:
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b

b

S1

S2

With these two non-overlapping signals we can pilot the two switches.
This technique is called synchronous rectification or synchronous con-

version: this can be useful every time we have to go down with the output
voltage. This technique has many advantages, for example the one that it is
all integrated: given an IC with the two switches integrated, we have to
put just the inductance, and the capacitors (especially the input one).

A final remark: when we are using a synchronous converter, we can make
current reach zero, but we can’t have DCM: when we put a MOS instead
of a diode, it can conduct also negative currents, so currents with opposite
phase respect to the conventional ones. This, because MOS switches does
not open: they conduct, independently on the sign of the current.

Do we like that these converters stay always in CCM? No: this is not very
good, because we have many energy moving from input to output, because
of this fact: if current becomes negative, we move energy from output to
input; everyone of these movements introduces losses, so we waste energy,
and lose efficiency. What we can do in these situations is to emulate a DCM
condition, stopping the clock when energy goes back to the input, in order
to prevent these losses.

Multi-phase converter

There is another problem: we have to work with currents of about 90 ampere!
Currents with these intensities are huge, especially through an inductor!

In order to reduce the stress of all the components, we can use a trick:
we know how to realize a buck converter, so, instead of a single converter
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which can handle 90 ampere, we can design two or three (we are going to use
three) converters, each one handling 30 ampere. This permits to reduce the
stresses on the various components.

b b

b

b

b

bb b

b

bbbb

b b

bbc

bc

bc

bc

bc

bc

bc

bc

b b

How can we pilot these buck converters in parallel? We have to step
down from 3.3 V to 1.1 V, so our signal must have a duty cycle of about 1

3

(a little bit more or a little bit less); this, for each converter. The difference
between the voltages of the converters is this fact: the piloting signals must
be delayed of 1

3
of the time: we have three converters, so the first one will

start its work at time 0, the second one at TSW

3
, and so on for the third one,

which will start at 2TSW

3
. The three driving signals are the same, delayed!

These signals have the same duty cycle, but different phases!
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t

S3

S2

S1

The first converter is driven by S1, the second one by S2, the third one
by S3.

What happens with this schematic? Well, in practice, the positive slopes
compensate with the negative slopes, so ripple tends to become negligible: if
duty cycle is perfect, we have a DC! If duty cycle is slightly more or slightly
less, we have something like this:

if duty cycle is slightly less than the right one we have some drops, and if
we have a duty cycle slightly greater than 1

3
we have some very narrow peaks.

RMS value is small: the RMS value of a DC is the DC (like the previous
idea suggests, is like having just one of the vector of the base, with no other
contributes from other components!); respect to this value, every variation,
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so every AC component, makes the RMS value increase: the minimum value,
given a DC, is the DC itself! If RMS value is small, switches, capacitors and
inductors are relaxed!

How can this happen? Well, we can use the sort-of-KCL to see that:

I2
RMS = I2

1 + I2
2 + I2

3

It seems that we have to do the sum of the currents, but in this expression
we are not taking into account the phase shift! With it, everything becomes
ok!

More in general, when we are going to design a multiphase buck converter,
we have to use these rules:

1. depending on which voltage level we want to obtain, design the duty
cycle, as:

D =
V0

Vin

2. depending on how many converters we want to use, introduce, from
one driving signal to the next one, a phase shift of 1

N
, where N is the

number of converters we want to use.

in this example, D = 1
3
, N = 3 (but it is a coincidence, that the two

numbers are equal).

1.3 Boost converters

Boost converter is the dual of buck converter (we will discuss this statement
later):

V0 > Vin

so, we have same polarity, but output voltage larger than input voltage:
for this reason, it is also called step-up: from an input voltage we have, out
of it, a higher one. The basic schematic for this converter is the following
one:

bc

L

SW RC0Cin

ICin
IC0

ID

ISW

bc
I0

Vin

V0

bc
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this schematic is valid in both CCM and DCM working modes. The input
capacitor, as usual, makes our noise to stay into the box, into the circuit.

1.3.1 CCM analysis

As usual, we want to calculate M (so we want to calculate the V0 over Vin

ratio) and to find the conditions for stay in CCM/DCM; in order to do it, we
can analyze iL; let’s consider the same assumptions we used for buck analysis
(we are not going to remember them), and find that:

TON TOFF

TSW

Imin

Imax

t

iL

The waveform is similar to what we have already seen in buck CCM, but
with different slopes: now, when the switch is closed (so during TON = T1),
the voltage on the inductor is equal to Vin (we are ignoring the voltage across
the switch); so:

diL

dt

∣

∣

∣

∣

/

=
Vin

L

What about TOFF = T2, when the switch is open? Well, we have that the
left pin of the inductor is connected to Vin, and the right one to Vout, thanks
to the diode (supposing that it’s ideal):
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diL

dt

∣

∣

∣

∣

\

=
Vin − V0

L

Now, remembering what we have done for buck converter, we impose the
cyclostationary condition, and obtain:

Vin

L
T1 +

Vin − V0

L
T2 = 0

this can be solved as:

Vin (T1 + T2) = V0T2

so:

V0

Vin
=

T1 + T2

T2
=

TSW

T2
=

1

1 − D

This is our converter; the minimum value of the output voltage is for
D = 0, and it is Vin: if D = 0, this converter behaves like a piece of wire. If
D → 1, we have a behaviour like this:

D

M

This, because if we have D → 1, we have that the switch stays closed, so
the output voltage decreases because the output capacitance discharges on
the load, and voltage continues to decrease.

Let’s calculate our parameters: we have that:

V0 =
Vin

1 − D

• about the output resistance, we have that:

∂V0

∂I0
= 0
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we don’t have I0 dependency in our equation, so output resistance is
zero!

• as usual, the audio susceptibility is:

∂V0

∂Vin
= M

• about the gain:

∂V0

∂D
=

Vin

(1 − D)2
=

V0

1 − D
=

V 2
0

V0(1 − D)
=

V 2
0

Vin

in buck converter we had Vin, but now we have a strong dependency on
the output voltage: this is dual to it!

Now, let’s find the various parameters we need to calculate the stresses:
let’s start from VA:

TON TOFF

TSW

t

VA

V0

Then, it’s iSW turn: it is the current flowing on the switch, so it is equal
to the inductor current, when the switch is closed; zero, when it is open. In
a dual way, iD is the current flowing into the diode, when the switch is open,
so it is equal to iL, when the switch is open:
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TON TOFF

TSW

Imin

Imax

t

ISW
ID

Now, in order to quantify the stresses, we have to calculate the currents
on Cin and C0:

• iCin
is the inductor current, minus its average (which we will calculate

later);

• iC0
is the diode current, without its average.
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t

iC0

iCin

The most stressed component, as we can see, is the output capacitor:
surely it will have the greater RMS value.

Now, let’s find some values: first of all, Imin and Imax.
We already need two equations: the former one, and the fact that:

Imax − Imin =
Vin

L
T1

or

Imax − Imin =
V0 − Vin

L
T2

and, we have that the average value of Imax and Imin is:

Imax + Imin

2
= Iin

This is different from what we seen in buck converter: now, the average of
the inductor current is equal to the input current, not to the output current.
We prefer to refer this equation to the output current, because we can use
Ohm’s law and refer it to the output voltage; we know that, if all components
are ideal, output power equals input power, so that:

51



V0I0 = VinIin

but we know that

I0 =
V0

R
so:

Iin =
V 2

0

Vin

1

R
=

V0

(1 − D)R

Our two equations are:

{

Imax − Imin = Vin

L
T1 = T1V0(1−D)

L

Imax + Imin = 2V0

(1−D)R

So, the solutions for this system are:

Imax =
V0

(1 − D)R
+

T1V0(1 − D)

2L

Imin =
V0

(1 − D)R
− T1V0(1 − D)

2L

If we multiply and divide by TSW, we obtain two more interesting equa-
tions:

Imax =
V0

(1 − D)R
+

V0D(1 − D)

2LfSW

Imin =
V0

(1 − D)R
− V0D(1 − D)

2LfSW

Now, let’s use them. Now, we want to find the boundary condition which
ensures to work in CCM; in order to do it, let’s put Imin equal to zero:

Imin =
V0

(1 − D)R
− V0D(1 − D)

2LfSW
= 0

As usual, the degree of freedom of this equation are L and fSW; supposing
that, from the specifications on power we have chosen fSW, the most useful
form for this equation is the one who uses L as unknown:

Lcritical =
(1 − D)2RD

2fSW

now:
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• if L > Lcritical we are sure to work in CCM;

• if L < Lcritical we are sure to work in DCM.

Obviously, of all the possible values of Lcritical, we have to choose the
one which ensures our condition; this can be found using the maximum
load resistor R (for whom the output current becomes minimum), and some
particular value for D. Which value? Well, this is not trivial as it was
for buck converter: we have to differentiate the function respect to D, and
obtain:

dL

dD
∝

[

(1 − D)2 − 2D(1 − D)
]

= 0

=⇒= (1 − D) (1 − D − 2D)

this is satisfied when:

D = 1 or D =
1

3
We have to take the maximum value to stay in CCM, but it depends on

the D range we have. Remembering that our maximum is D = 1
3

(the other
one is a trivial solution for a minimum), we can be sure to be in CCM.

For reasons we will explain later, sometimes we need to design boost
converters in DCM; in order to do it, we have to use an inductance value
which must be less than the Lcritical value; the minimum value of Lcritical needs
minimum R, and about D, try to minimize it (studying the curves).

1.3.2 DCM analysis

The graph of iL current, in DCM, is something like this:

TON TOFF

TSW

t

iL

Tidle

Ipeak
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Now, we want to find all our parameters, for DCM; first of all, M :

M =
V0

Vin

Now, if we take L < Lcritical, we are almost sure to be in DCM. Let’s
remember the already-find equation:

V0

Vin

=
T1 + T2

T2

=
T1

T2

+ 1 = MDCM

Let’s remark that T2,DCM is shorter than T2,CCM, because now we have
also the idle time T3; we can say that:

MCCM < MDCM

Now, we need another equation: we have two unknowns, and just one
equation; this can be find using the Ohm’s law applied to the output, related
with the average diode current (now output current is related with diode
current, not with inductor current):

V0

R
= iD

Now, we have that the average of the diode current is equal to the area
of a triangle, spread on the entire TSW; this means that, given T2 as base,
and Imax as height

iD =
1

2

1

TSW
T2Imax

so, our two equations are:

{

V0

R
= 1

2
T2

TSW

VinT1

L

M = V0

Vin
= 1 + T1

T2

from the second equation, we can find (inverting it) that:

T2 =
T1

M − 1

substituting:

V0

Vin
= M = R

1

2

T1

TSW

1

M − 1

T1

L

But we have that
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T1

TSW
= D

So, multiplying and dividing as usual for TSW, we obtain:

M(M − 1) =
RD2

2LfSW

this is a second order equation:

M2 − M − RD2

2LfSW
= 0

its solutions are:

M =
1 ±

√

1 + 2 RD2

fSWL

2

we want the positive solution, in order to have M larger than one:

M =
1 +

√

1 + 2 RD2

fSWL

2

Some observations about the parameters (we are not going to calculate
or show them):

• the output resistance is different than zero, because we have depen-
dency on the load;

• as usual, the audio susceptibility is equal to M ;

• the gain has a complicated expression (which can be found by dif-
ferentiating the expression by D), but this is not interesting; it is,
dimensionally, a voltage.

If we want to graph the behaviour of M in CCM and DCM, we obtain
something like this:
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D

MCCM

D

MDCM

In CCM we have the already-known result; in DCM, we have something
almost similar to straight lines: they are not really lines, but something
similar; at start we have CCM, so DCM, and then again CCM.

Now, few more observations: if R → ∞, we have that MDCM goes to
infinite: this means that if we are working with an open loop converter, so
without a control, if we disconnect the load, we break the boost converter
(or its protections): we must avoid to disconnect the load.

For buck converters, we preferred CCM, because the various components
were less stressed: if we have two converters handling the same powers, one
designed in DCM and one in CCM, the one in DCM will have higher RMS
values for each component (and this is really bad!). This was true for buck,
but it is also true for other converters.

Unfortunately, CCM is almost impossible to control, in boost converters,
so we have to stay in DCM: CCM transfer function (in Laplace domain) has
a zero in the right half-plane, so it is almost impossible to control; DCM
means to have stressed components, and less available power; this means
that, if we want to design a step-up converter, the best idea (with our actual
knowledge) is to use a buck converter with a transformer, in order to handle
both voltage and power. We will study these phenomena later, when we are
going to show how to control these converters.

Boost converter has other issues: if we have a boost converter like this,
with high load:
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bc

bc

bc

The mesh behaves as a resonant circuit!
In fact, we still have the diode, which blocks current to flow in the opposite

verse, and maintains the current positive, so the voltage equals the peak
value: the load is light, so it steals a little current from the resonant circuit,
and the diode doesn’t permit to the sine wave to come down. From one
side, we are boosting the value, so the circuit behaves as a boost converter,
because the output voltage goes to 2vin. Sometimes we just want a high
voltage value, but if our output voltage must be precise, this resonance is a
problem! How to solve it? Well, we can use this idea:

bc

bc

Resonance can be removed by introducing losses into our circuit! But...
We can’t introduce losses, because they reduce η! What to do? The standard
solution is to put a resistance in parallel of the mesh, and a diode: the diode
prevents the added resistance to conduct when the converter is working! This
means that this resistance works just during the transient, and its work is
just to charge the capacitor. The value of this resistance is:

R <

√

L

C0
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1.3.3 Synchronous boost converter

Can we realize a synchronous boost converter? Of course, yes:

bc

bc

S1

S2

Now, just a remark: if we read this circuit from left to right, this is a
boost converter; if we read it from right to left, this is a buck! This means
that a synchronous buck (or boost) converter is a bidirectional circuit: seen
from one side is a buck, from the other a boost. We have:

V2

V1

∣

∣

∣

∣

boost

=
1

1 − DS1

V1

V2

∣

∣

∣

∣

buck

= DS2

So, if we remember that:

DS1 = (1 − DS2)

these two parameters, two normalized times, are the same! This means
that we can see the two circuits as a single circuit, remembering the relations
between the duty cycles, and considering as TON for the interesting point of
view (buck or boost), so as Di, the signal which keeps closed the switch of the
converter (remembering to consider that the other one is just a substitute of
the diode).

We can do an observation: this converter, basically, acts like some kind
of transformer!

1 2

1
1−DS1

DS2
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This is a special transformer: it is able to transform DC: it has no mag-
netic core limitation, so its bandwidth starts from s = 0! We can see that it
behaves, depending on the direction, as written.

Now, let’s consider this basic circuit:

V1 V2

Which is the power flow of this converter? Well, it depends on the highest
voltage level: in fact, the highest value of voltage decides the verse of the
power (left to right or right to left); if we do something like this:

V1 V2

This can change voltage and resistance seen from the pins, so also the
power flow: we can move energy to the direction we want.

We said that our circuit has a behaviour like this:

D

M

If we think at the boost converter as a DC transformer, it is easy to
understand why we have something like this: we have non-ideal components;
for example our inductor will have a series resistance, so we get this situation:

bc

R1

RL
V
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Taking out of the circuit all the boost schematic and introducing just the
transformer symbol, we obtain this:

R1

R2 = RL

n2

V

by changing the duty cycle D, we can obtain a resistance R2, from RL, and
its value depends on the parameter n of the converter. R1 is the combination
of all loss resistances (source, capacitors, inductor etc.).

Let’s look at the maximum output power: for this circuit we can easily
proof (by computing i and v, multiplying, differentiate and put to zero) that
we have the maximum output power when:

R1 = R2 =
RL

n2

If we maximize the output power, the maximum efficiency is equal to
50%: this is a bad condition for a DC-DC converter!

From this condition, if we want to get higher output voltage values, what
we obtain is something very bad: when we are increasing voltage, we find a
maximum, and if M keeps going larger and larger (trying to increase output
voltage), we go from the other side of the maximum:

if we go to the other side of the maximum, the slope changes, and this
means having a sort of amplifier with a negative gain! In fact:

∂V0

∂D
= gain

This is very bad: boost converter must be controlled, so it is inside a
closed loop! If we introduce a negative sign, we change the phase of 180◦,
and this makes the feedback be a positive feedback: as we try to increase the
output voltage, by increasing M , we decrease it, due to the negative slope,
so the control goes in panic!

1.4 Buck-boost converters

Buck-boost converter topology is something like this:
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bc

Cin C0

L

SW D

R

iCin iL

iSW iD

iC0

I0

This was formerly invented as an autonomous converter: this is one of the
oldest converters, and for many years it was considered as a basic topology;
actually, we know that it is composed from a buck, and a boost (we will
discuss this later).

An observation: the input has a switch, the output a diode: the first
observation is that it has the input of a buck converter and the output of a
boost converter; we are going to analyze M :

M =
V0

Vin

1.4.1 CCM analysis

Let’s start as usual with iL, using the standard hypothesis: iL starts from
a non-zero Imin value, after a time TON (time when the switch is closed) it
reaches a maximum current value Imax, then it starts decreasing, continues for
a time TOFF (when the switch is open), and goes back to Imin (this, because
we are imposing the cyclostationary condition).

By studying this topology, we can see that:

diL

dt

∣

∣

∣

∣

/

=
Vin

L

diL

dt

∣

∣

∣

∣

\

=
V0

L

An observation: buck-boost converter is an inverting converter: we have
that V0 < 0, so slope is negative even if the sign is not showed, because of
this reason.

Our equation is:

Vin

L
D +

V0

L
(1 − D) = 0

from here, with some algebra, we can obtain:

V0

Vin
= − D

1 − D
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this is normal: we have a negative output voltage, assuming to have
a positive voltage: VinV0 < 0!

Another remark: this expression can go from 0 to ∞; as engineers we
must know that the infinite does not exist, so this expression will reach some
maximum. Output voltage can be higher or lower, in modulus, respect to
the input one.

Now, the same, standard stuff: let’s see that iSW is the current flowing
through the inductor during TON (or D, using normalized values respect to
the full switching time TSW), and iD is the current through the diode when
the switch is open.

Bad news: both input and output capacitors are very stressed, because
on them there is a pulsed current, so its RMS value will be very high. The
currents through the two capacitors in fact are:

iCin
= iSW − IIN

iC0
= iD − I0

and we have graphs like these:

t

iCin

iC0
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Now, what else? Well, voltages! The only interesting node is the node A,
so the voltage on it is something like this:

t

VA

Vin

V0

during TON the switch is closed, so we have Vin; during TOFF, we have
V0: let’s remember that the two voltages have different signs, so we have a
spreading from a positive Vin to a negative V0: this is a high voltage stress!
We have to take account on it, when we are going to choose the diode and
the switch: they must survive after this voltage change!

In DCM, everything is worst, as usual, so we want to work in CCM,
unfortunately this is almost impossible, because, as the boost converter, this
has control issues: we have to design it in DCM. All the SoB (Son of a Boost)
converters have the same issue.

Now, let’s calculate Imin and Imax: as usual, we need two quantities, and
two equations. The first one is:

Imax − Imin = −V0

L
TOFF = −V0

L

1 − D

fSW

let’s remember that V0 < 0 for hypothesis!
Once more, we need the average of the two currents: the average of Imin

and Imax, as usual, is just the average value through the inductor. What we
can’t do is to relate directly to V0: now the output current is related to the
DC value of the diode current, not of the inductor’s one; what we can do is
see that:
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iD =
Imax + Imin

2
(1 − D)

this, because we are spreading the area of the trapezoidal waveform
through a cycle!

so:

−V0

R
=

Imax + Imin

2
(1 − D)

we related the output current to the diode current, but the result is the
same: we have our equation! The system we have to solve is:

{

Imax − Imin = − V0(1−D)
LfSW(1−D)

Imax + Imin = −V0

R
2

1−D

so, by adding and subtracting the two equations, we obtain:

Imax = − V0

R(1 − D)
− V0

2LfSW
(1 − D)

Imin = − V0

R(1 − D)
+

V0

2LfSW
(1 − D)

The first one is useful to calculate the stresses on the components; the
second one is useful in order to find the DCM/CCM boundary condition: if
we put Imin = 0:

− V0

R(1 − D)
+

V0

2LfSW

(1 − D) = 0

this means:

1

R(1 − D)
=

1 − D

2LfSW

as usual, we decide and fix a value for fSW, and find L:

Lcritical =
(1 − D)2R

2fSW

This is again the critical value for L, the boundary condition. Like usual,
it is a variable value, so if we want to stay in CCM, we have to satisfy this
condition for the maximum critical inductance: this is the one with maximum
load resistance, and with the minimum D: we have that
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M =
D

D − 1

so, this is a monotonic function; the minimum duty cycle brings the
maximum current!

Now, let’s calculate the three parameters:

∂V0

∂I0
= 0

∂V0

∂Vin

∣

∣

∣

∣

D=constant

= M

this is the same result of all times; so, by computing the derivative respect
to D of V0:

∂V0

∂D
=

−Vin

(D − 1)2

or, in a different way:

= − D

D(D − 1)2
Vin = − VinD

D(D − 1)(D − 1)
=

V0

D(D − 1)

1.4.2 DCM analysis

Before starting with DCM analysis, we want to show something new: when
the switch is closed and the diode is open (or during the opposite situation)
in a buck converter or in a boost converter we create a direct connection
between input and output, passing through the inductor.

In buck-boost converter we can distinguish two specific phases: one, which
charges the inductance, and another, which discharges it. This converter is
classified as indirect converter, because there is not a phase when energy
goes directly from the input to the output:

bc

Cin C0

L

SW D

R

Now, after this introduction, let’s start with the DCM analysis:
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TON TOFF

TSW

t

iL

Tidle

Ipeak

We have the usual extra time T3 (the idle time).
We can use the same analysis of all times, calculate the currents on the

switch and on the diode, so the currents on the input and output capacitors,
and so on; RMS values can be calculated with the sort-of-KCL (or by hand:
the KCL is theoretically correct, but we have cancellations errors!).

Now, we want to find M for DCM, but we are going to do something new:
we have said that this is an indirect converter, because there are two different
phases, respect to energy. We know that the energy into an inductance L is:

EL =
1

2
LI2

The energy we transfer at each cycle is equal to:

EL =
1

2
LI2

max

in fact, we are not interested on how much time we need to fill the bucket,
so the inductance: we are just interested in the energy it has!

We already know the expression of Imax: we know that Imin now equals
zero, so we can just use the information about the upper slope:

Imax =
Vin

L
T1 =

Vin

L

D

fSW

so:

ET,cycle =
1

2
L

(

Vin

L

D

fSW

)2

=

=
1

2

V 2
inD

2

Lf 2
SW
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This expression is very counter intuitive: E, so the energy transferred, is
inversely proportional to L: we reduce the bucket volume, we increase the
energy!

We have that the input power equals the energy transferred per cycle,
times the switching frequency: switching frequency represents the number of
cycles per time!

Pin = ET,cyclefSW

so:

Pin =
1

2

V 2
inD

2

LfSW
= Pout

in fact, for hypothesis, we are assuming no power losses! But we know
that:

Pout =
V 2

0

R

so, we can write, just using energy properties, that:

V 2
inD

2

2LfSW

=
V 2

0

R

but we want to find M ; we can easily invert this expression, and obtain:

V0 = −VinD

√

R

2fSWL

we have to take, of the two solutions of the equation, the negative one,
because we are using a buck-boost converter, which is an inverting converter!

Now, a couple of observations: if we calculate the usual three parameters,
we have:

∂V0

∂Vin

∣

∣

∣

∣

D=constant

= MDCM

like all times;

∂V0

∂D
= −Vin

√

R

2fSWL
=

V0

D

This is not bad: if we don’t change our load, if we don’t change D, we have
that output voltage is proportional to D: we have an almost linear system!
But we have something bad: it depends on the load! If we disconnect the
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load, we have that V0 → ∞ (because M → ∞, and this is very bad! We
have to take care of the load, to keep it connected for each time, even in
closed-loop!

What about the output resistance?

∂V0

∂I0

= ...

Well, we have to find V0 as function of I0:

V0 = −VinD

√

V0

I0

2LfSW

so, squaring all the terms:

V 2
0 = D2V 2

in

V0

I0

1

2LfSW

inverting:

V0 =
D2V 2

in

2I0fSWL

so, let’s differentiate it:

∂V0

∂I0

=
0 − 2D2V 2

inLfSW

(2LfSWI0)2
= − D2V 2

in

2LfSWI2
0

This is our output resistance; can we write it in a simpler way? Well,
remembering that:

V 2
0 = V 2

in

D2R

2fSWL

we can see that:

V 2
in

D2R

2fSWLV 2
0

= 1

so:

V 2
0

R

R2

V 2
0

= −R

this is not an actual negative resistance: we made our calculations refer-
ring just to V0, without considering that it is referred to the input: actually
we have a positive resistance, which equals the load impedance!
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1.5 Some notes about basic topologies

We have studied the two basic topologies; now, let’s consider how to put
them together, and obtain a buck-boost converter (in order to see that it is
actually the union of a buck and a boost!); let’s consider something like this:

bc

bc

buck converter boost converter

In the center of the schematic we have two capacitors in parallel; the basic
idea is to add them, but we can also remove them! They are not important,
because they are just a way to improve the output (for buck) and input
(for boost) filtering (input capacitor for buck and output capacitor for boost
must not be removed). So, we can remove those capacitances, and we
obtain two inductors in series; by adding them:

buck converter boost converter

bc

bc

V0 = VinD
1

1 − D

we just multiply the two transfer functions and obtain, except for a neg-
ative sign, the buck-boost transfer function: this is a not-inverting buck-

boost. We can use four switches instead than two switches and two diodes,
solution used often for low power integrated converters. Like in the inverting
schematic, we have two stressed capacitors.

How can we relate this schematic to the previous one? Well, let’s consider
the two phases:
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bc

bc

ON
OFF

this inductor for both phases is grounded, but at each cycle we change the
ground pin: in the previous (inverting) schematic, we had the same ground
pin for the two cycles; now, we are taking the inductor, and flipping it. This
can be done, because it is an indirect converter: we are still transferring
energy one time from input to the inductor, one time from the inductor to
the output.

1.5.1 A short introduction to Čuk converters

Professor Čuk realized that this topology is composed of a buck, followed by
a boost; his idea was to invent a new topology, the boost-buck converter,
called Čuk converter:

bc

bc

this is dual respect to the previous one.
Input and output capacitor are near to an inductor, so they are not

stressed anymore; its gain is:

V0

Vin
=

D

1 − D

Output voltage can be higher or lower than the output voltage. It is a
good converter, but has a big issue: it is complicated: it has too compo-
nents!

If the switches are driven at the same time, together, we have something
like this:

bc

bc

ON OFF
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During T1, during the ON phase we close the switches, and we have that
the input side is just charging the inductance, and output side taking current
out of the capacitor; during the OFF phase, we open the switches, so the
boost converter is charging the capacitor, and the buck converter is working
with the energy stored in the inductor and in the output capacitor. Energy
now is stored in the capacitor: we first charge the capacitor with the boost,
disconnect it and connect it to the buck. This capacitor has all the time one
pin connected to the ground.

We can change this circuit in this one:

ONOFF

bc

I can flip the capacitor: during TON the switch is closed, so the left side of
the capacitor is grounded, and it is discharging its energy; during TOFF, the
switch is open, and the input current flows through the capacitor, charging
it. This time we are flipping the capacitor (instead of inductor, like in buck-
boost); now, the output voltage equals:

V0 = − VinD

1 − D

this, because now we are also flipping the capacitor.
The two inductors can be at the same core, so this can provide simplifi-

cations and high performances.

1.6 Off-line rectifiers

Now, we are going to introduce some ideas about rectifications, so about
AC/DC conversion: basically, if we want to rectify an AC voltage, we have
to do something like this:

b

b

b

b

VDC
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From the input AC, we have to put some diode bridge (like a Graetz
bridge), then a low-pass filter, which can be a capacitor: the source of this
voltage filter will be a non-linear source: as usual, a low-pass filter returns an
average, a DC voltage: if we have a linear source like a resistor, the voltage
across the capacitor is the average value of the voltage on it; now, the source
is non-linear, so, in this case, instead of the average, we have the peak value
(with some losses):

Actually, this is not a DC voltage: we have some ripple, which can be
reduced simply by increasing the capacitor value.

This rectifier has a large inrush current: we have to charge the (big)
capacitor, and, if we stop the switch, the derivative of voltage respect to
time increases: inrush current is so very high.

Now: when diodes are conducting? Well: they, after the transient, are
conducting just when we reach the sine: if we want to remember what the
previous plot says, is: after the transient, we have an output voltage, which is
basically equal to the peak of the rectified waveform; when the rectified sine
begins to come down, the DC voltage, due to losses or something similar,
begins to decrease, until reaches the value of the rectified voltage (which
comes up, after a certain time); for a little time, diodes are conducting, in
order to charge the capacitor, in order to fill it and making its output voltage
equal to the ideal VDC. The current of the diodes, which is the current taken
from the input source, is a pulsating current:
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Current is taken just from narrow pulses. This brings two great issues:

• it generates a lot of noise;

• it is very bad for the power company, because of a complicated reason
we are going to show soon; an idea is: if there are many non-linear
loads which take the current like this, we have a pulsating waveform.

We have that there is an almost waveform, with some peaks.

Let’s focus on the second point: this pulsating current is periodic, so we
can expand it with Fourier series:

i(t) =

∞
∑

n=1

an sin(nωt + ϕn)

those peaks are symmetrical, so the i(t) function is odd respect to time;
this means that Fourier expansion will have just odd terms (sine terms). We
know that:

v(t) = Vpk sin(ωt)

where ω is the pulsation of the input voltage.
Now, we can find the power just saying that:

p(t) = v(t)i(t)
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We have no power for most of the time, and then very high power pulses;
this is interesting, but we can do something more: we can calculate average
power!

p(t) = v(t)i(t) = Vpk sin(ωt)
∞

∑

n=1

an sin(nωt + ϕn)

There are common sense rules and laws about n: we wrote ∞, but usual
n = 4 is a good limit.

Now, let’s calculate this average using math: for a generic n-th term, we
have something like:

1

T

∫ T

0

Vpkan sin(ωt) sin(nωt)dt

This is the average contribute for a generic term of the sum, so for the
n-th harmonic of the spectrum. Now, an observation: Fourier series is an
orthogonal base of L2, so, respect to another sinusoidal waveform, it is or-
thogonal: if we calculate the integral, in a period, of the product of two
harmonics, if the harmonics are the same, the integral is different from zero;
in other cases, it is zero.

About the first harmonic:

1

T

∫ T

0

Vpka1 sin(ωt) sin(ωt)dt =
Vpk

2
a1 cos(ϕ1 )

About the other harmonics, they don’t bring contributes into the average
power.

What happens in practice? Well, if we have a 50 Hz main harmonic, re-
membering that the second one does not exists, the third one, 150 Hz, don’t
bring any contribute to the load (which receives only the fundamental one,
due to the filtering, as already seen), but dissipates all its contribute through
the wire! Power companies are not happy about this type of harmonic dissi-
pation, because they inject high (actually no so high!) frequency harmonics
in the network, dissipating power, so they introduced very strict rules about
the use/non-use of the pulsing current.

Unless some cases, we are not allowed to absorb current like this.
If we can’t use these rectifiers, what can we do? Well, the part which

makes the current be pulsating is the diode bridge with the capacitor; we
need this bridge, because we have to rectify the input waveform in some
way, but we have to avoid the capacitor, because it is charged with that
pulsating waveform.

74



Our rectifier must be something which is not a capacitor, but it is a prob-
lem: this makes current not be a constant, but something variable! There is
no way to obtain it! An idea is to have something which looks like a resis-
tance: with this kind of load, current will be just attenuated, but sinusoidal,
in phase with the input voltage.

So: what companies want to see is a resistive load, so something which
has an output current in phase with the input voltage, sinusoidal; what we
want is a DC output voltage: this is the problem of realizing a PFC.

A PFC (Power Factor Corrector) is something which seems a resistor for
the company, and a DC delivery circuit for us.

What is the power factor? Well, let’s see: the average of the power of
two signals is:

v(t)i(t) =
VpkIpk

2
cos(ϕ)

this is the average power. Let’s remark that Ipk is relative to the funda-

mental (as seen just before), and ϕ is the phase between input voltage and
output first harmonic current.

The active power can be written as:

Pactive = VRMSIRMS

but, if our load is not resistive, we have that this cos(ϕ) is different than
1; we obtain two variations:

Pactive = VRMSIRMS cos(ϕ)FD

The first one is just the introduction of the well-known cosine; the second
one is this: an RMS value is evaluated using all harmonics in the wave-
form; what we are using is not the whole RMS, but just the fundamental
component! This FD, called distorsion factor, is defined as:

FD =
I1

IRMS

where I1 is the first harmonic of the output current (in Europe, 50 Hz, in
USA, 60 Hz). FD is just the ratio of the two quantities. The power factor is
defined as:

FP = cos(ϕ)
I1

IRMS

This is the actual definition of power factor; previously all the engineers
used just the first term, because most of the loads were motors, and mo-
tors have both inductive and resistive parts; now our loads are electronics,
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so the distorsion part is very important. The cosine term, now, is called
displacement factor.

1.6.1 PFC with switching converters

Now, how can we realize this PFC ? Well, first of all, we need a constant
voltage out of our system: a DC. A way to do it is to put a huge low-pass
filter, which filters all the harmonics, but it is impossible: too expensive and
large.

Instead to do this, we can use electronics: we can transform this voltage
into an output voltage, which is almost constant. Now: which circuit can we
use, to do it?

First idea can be: let’s use a buck! Can we? Well, a buck is a step-down
converter, so we have to put the output voltage at a certain level.

Surely we can step-down the higher voltage values, but there’s no way to
step up some values! What we obtain is a crosstalk distorsion: some silent
intervals!

The good idea is to use a boost converter: if I place the voltage over all
the waveform, every value can be raised. It works! Every value can be raised
to the point! The critical points are the lowest ones, because we need larger
boost factor, but we have seen that the boost factor increases until it changes
slope, falling down; this is a bad news, but the saturation point for the boost
factor is related to losses, to parasitic resistances: currents will be low, so
we can do it! There is another intrinsic advantage: at the input, we have
a low-pass filter, which removes noise! Another advantage: it can be used
to realize universal power supplies, because we just have to put the output
voltage on a point higher than the peak value of all the world; this can be
a little critical for Australia (which has 240 VRMS in the line), but, for these
cases, we can step down with a first stage (which generally is not a buck),
and then use the boost PFC.

A note: we have to isolate this topology: after the PFC we need a second
stage, which must be isolated, in order to decouple the references and prevent
risks of many types for the user and for the electronics.

What about buck-boost as PFC? Well, in this case, the polarity is oppo-
site, so we can use it as PFC. It works, but it can be a bad idea to use small
output voltages (we want to have large M , in order to make the buck-boost
work well), so good voltages can be -50 V or -100 V. These converters are
not many used because they have a pulsating input current, so we have to
put a large EMI filter, which is very expensive: it is better to have a boost
converter.
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Previously, we used the energy approach to do the analysis: this can be
also used in a PFC, with an input voltage, a certain input current, and on
the output we will get this:

b

b PFC

Which is the instantaneous input power? Well:

p(t) = v(t)i(t)

The frequency of this wave is the double of the input wave frequency,
and:

PAVE =
1

2
Ppk

this, for the properties of the sine with the powers.
What about the output voltage? Well, we want to use something like

this:

PFC

This load, in order to provide a DC, must have a constant output power:
we have to provide some extra power, and an energy storage which can store
for 5 ms, and release it for other 5 ms: we need something which maintains
constant the output power. Our luck is that the average value of the input
power, which is the desired output power, is half of the waveform, so basically
it is an energy storage! When the load has too much power, this is taken by
the output capacitor in order to don’t send it to the load; when the load is
less driven, the capacitor gives power to the load.

A little issue: when we store and remove current through the capacitor,
we have current flow on it, and so voltage changes: we don’t have an actual
DC voltage, but something similar: voltage will increase and decrease like
this:
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PFC

Control

b

b

b

b

This ripple isn’t easy to control.
Now:

1

2
CV 2

1 − 1

2
CV 2

2 = ∆E

So, thanks to the relations previously explained, we have that the energy
change is related to the voltage change, so to the ripple!

Now, the capacitor value is very important: we are at 100 Hz, so we have
to control it: at these frequencies, capacitor behaves as a capacitance, so we
have to care also about it!

Why boost can be used for PFC? Well, we said that a boost converter is
hard to control, because it has a zero at the right half-plane.

The control circuit takes a sample of the input and output voltages, com-
bine them, produce an error signal and drive the circuit. Can we maintain
a quite constant output voltage? Well, if we want to have a DC, without
ripples, the output voltage is totally constant, and so also the output power:
we are delivering a constant power to the load. If we remove the output
ripple, this means that the input power is constant too, but we also know
that vin must be a sinusoidal waveform; what happens is that:

iin =
Pin

vin

where Pin is constant, and vin has two zeroes for each period: the input
current is not a sine! This means that we have to store and release energy,
because, if we don’t, the PFC does not behaves as we want.

How may I design a control circuit which is blind respect to the 100 Hz
ripple? We need it, because it is physiological, good: in order to do it, it
must be blind to the frequency of that ripple, so we can close the loop with a
low pass filter before the control, with a frequency very lower respect to 100
Hz; a good idea can be to use something like 10 Hz. This introduces another
positive fact: the right-zero of the boost is at a higher frequency respect to
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the 10 Hz of the filter we already introduced: this means that we don’t have
to care about it any longer!

End of the chapter

We want now to end this chapter, by introducing the following one; let’s
consider one of our circuits (for example, the buck converter):

bcb

b

b

b

b

b

Output voltage must be constant; what we have to do, so, is to measure
with some circuit the output, and control it by changing something (for
example D): we have to close the loop, introduce a feedback, and so we may
have some instabilities. There is a problem: the circuits we analyzed are:

• time-variant (each time the switch changes its position, the topology
of the circuit changes!);

• non-linear : there are non-linear elements, such as the switch or the
diode.

This is very bad. Out next purpose will be to average our circuit, and
obtain a time-invariant non-linear circuit; we will linearise it, and then obtain
an LTI circuit, easier to control.

79



Chapter 2

Modelling of switching-mode

converters

Now we are going to work to the modelling of our converter: find the relations
between duty cycle and output voltage, but in the Laplace domain, in order
to obtain a transfer function, from whom we can design the feedback control
system. What we need is something like:

h(s) =
v0(s)

d(s)

What do we have and what do we need? Well, if we want to use the
formalism of transfer functions, we need a linear system: starting from the
actual time-variant non-linear system we have to average it and obtain a
time-invariant non-liner system, which can be linearized, in order to obtain
an LTI system. There are many different methods for averaging a circuit: in
order to do it, we have to average a quantity x(t), for example by taking this
integral:

x(t) =
1

TSW

∫ t+TSW

t

x(τ)dτ

this, supposing (it is not mandatory) that our quantity x(t) is periodic
of TSW. This kind of average is known as moving average: if we move the
average of a periodic signal, and TSW is the period of this signal, we have a
constant value. Another possible way to average something is this:

x(n) =
1

TSW

∫ (n+1)TSW

nTSW

x(t)dt

this is a discrete average: from the first average method we had a single
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value; now, we have a sequence of numbers, which can be processed using
Z transform and so on.

From the first average in general we obtain a function; with the second, a
sequence of numbers. Which advantages/disadvantages do we have from
these processes? Well, in both cases we lose the behaviour hidden inside one
cycle: we don’t know anything about the shape of the signal, peak values,
Imax, Imin, IRMS: everything is reduced to one single number. From the
second average we have something similar, but we can see it better in the
frequency domain: the second operation is similar to a sampling process: we
average fSW times per second. The sampling theorem says that we have to
sample at the double of the frequency of the system; what we have now is
that our analysis will be valid, limited, up to half of fSW: our models stop
to be valid at fSW

2
.

Which are the advantages? Well, at these levels, we have a time-invariant

circuit: this is easy to handle, even for simulators like SPICE! Every time we
have to handle with SPICE a time-variant circuit (something with switches
or something else) we need a very very long simulation time: with simi-
lar circuits, but time-invariant, the time decreases of one or two orders of
magnitude (for example, one hour to one second).

Once we have a time-variant system, linearize it is simple: we can use the
Taylor expansion theory, and cut up to the first term: this means that, with
this last operation, we lose the large signal behaviour: of all the non-linear
behaviour of the system we take just the slope of the tangent line in a certain
point: the approximation we take from the small-signal model is just a local
information:

b

we have informations just for a little region around the linearization point.
There are infinite values we can use to perform the linearization (around
whom linearize the system), but a good idea can be to use the critical ones
(like the corners): by this way, using critical point, when we design the
control we may lose some performances, but obtain stability everywhere!
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b

Our control system will be quite easy: an opamp and some passive com-
ponents (such as capacitors and resistors).

2.1 State space averaging

We are going to analyze a technique which works in every situation, but which
has a lot of calculations (easy calculations, high-school algebra!), which must
be solved in a quite mechanical way.

The basic idea of this technique is: let’s take a circuit, for example the
boost circuit in CCM:

bc

we have that its switch keeps opening and closing all time long; when the
switch is fixed in its position, we have two different topologies: one during
TON, one during TOFF:

b

b

b

b

let’s consider with 1 the topology with the closed switch, and with 2 the
topology with the open switch.

Now: let’s forget that these two circuits derive from a switch-mode power
converter: now, they are just two LTI circuits, so circuits which can be
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studied with the formalism of differential equations! Unfortunately, we have
that these circuits last for a short time, but, just for the single times TON and
TOFF, we can write down the differential equations for them. In a general
way, we can write that, for a LTI system.

ẋ = Ax + Bu

where ẋ is the time derivative of x, which is the state vector (so the
vector of the state variables of the system), u the input vector (so the
vector of the inputs of the system), and the matrices are what characterize
each system: the two circuits will differ for A and B. Usually there are also
other two matrices, which we will ignore, because, in this case, the output is
a state variable.

Let’s define the two vectors of the problem:

x =

[

iL
v0

]

The actual state variable is vC0
, but it equals the output voltage. What

about u ? Well, it is scalar, because we can consider just vin as input of our
system; be careful: another input is i0, because we have to consider as input
everything which changes the bias point; we know the relation between
i0 and the state variable v0 (because there is a relation thanks to the load
resistance R), so the input vector will be just the input voltage.

A remark about initial and final conditions: the final value for TON is the
initial value TOFF, and vice versa: with these conditions we can solve those
differential equations.

Let’s identify the two matrices for the two circuits:

1. for the first circuit:

{

LdiL

dt
= vin

C0
dv0

dt
= −v0

R

by cleaning (considering just the derivatives at the left member, and
defining C , C0):

{

diL

dt
= vin

L
dv0

dt
= − v0

RC

so, using the matrix formalism, we have:

ẋ = A1x + B1u
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this becomes (by inspection):

ẋ =

[

0 0
0 − 1

RC

] [

iL
v0

]

+

[

1
L

0

]

vin

2. for the second circuit:

{

LdiL

dt
= vin − v0

C0
dv0

dt
= iL − v0

R

by cleaning (considering just the derivatives at the left member, and
defining C , C0):

{

diL

dt
= vin−v0

L
dv0

dt
= iL

C
− v0

RC

so, using the matrix formalism, we have:

ẋ = A2x + B2u

this becomes (by inspection):

ẋ =

[

0 − 1
L

1
C

− 1
RC

] [

iL
v0

]

+

[

1
L

0

]

vin

Now, with an ODE solver, we can put these matrices and solve the system.
Problem: we don’t are ODE solvers! We want something different!

What we can do now is: let’s work with just the weighted average of
the two matrices, merging them into one single matrix, and this will be our
average system; instead of A1 and A2, we will have:

A = A1d + A2(I − d)

where d is the vector of duty cycles, I the identical matrix (or, this time,
the identical vector).

This method has some reasonable probability to work.
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Scalar example

In order to understand why what we have done has some sense, let’s consider
a simplified example, with just one dimension:

• during TON,

ẋ = a1x

• during TOFF,

ẋ = a2x

Which is the evolution of this system, in time domain? Well, from Cal-
culus 1, we know that the solution of these expressions are exponentials:

x(t) = e−a1tx(0)

This system, like the former one, switches every time from one to the
other equation. We have to find the final condition, so the value of x in the
time TON:

x(TON) = e−a1TONx(0)

this is what happens, in the first system, after TON. Well, we know that
the second equation is something like this (considering also the time shift):

x(t + TON) = e−a2tx(TON)

of this system we are interested to find the final condition (like we’ve
done in the previous case); the final condition, in the instant TSW, equals
t = TOFF: in fact, we have t shifted by TON, and t = TOFF, the argument of
the function will be TSW:

x(TOFF + TON) = x(TSW) = e−a2TOFFx(TON)

now, let’s remember the previous final condition, and substitute into the
second equation:

x(TSW) = e−a2TOFFe−a1TONx(0)

With this trick we have just one differential equation:

x(TSW) = e−(a1TON+a2TOFF)x(0)
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let’s introduce TSW into the equation: in order to do it, we multiply and
divide the exponent for TSW, obtaining:

x(TSW) = e
−(a1TON+a2TOFF)

TSW
TSW x(0) =

= e−(a1D+a2(1−D))TSWx(0)

We have, now, an equivalent time constant equal to:

a = a1D + a2(1 − D)

this is very similar to what we have done, but with the matrices!

Get back to matrices

Let’s continue with matrices: also with them, we want an average time

constant:

A = A1d + A2(I − d)

Using simple matrix algebra, we can easily obtain:

A =

[

0 −1−D
L

+1−D
C

− 1
RC

]

B =

[

1
L

0

]

Very bad news: this A is the matrix which represents the behaviour of
the averaged system, and its eigenvalues are related to the pole positions
of the system; these eigenvalues are depending on the duty cycle D: if we
change the bias point, our poles move. This system is not linear (as we will
see better later): D changes in time, so we are talking about poles, but this
is wrong: non-linear systems cannot be described in terms of poles or zeroes,
because this formalism belongs to the transfer function formalism, and it can
be applied just on linear systems.

This is not the worst news: all this stuff is mathematically wrong! The
previous example, where we used all our tricks, was scalar: with matrices,
we have that:

eAeB 6= eA+B

in fact, we have that:

eA = A1
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eB = A2

and this product is not commutative:

A1A2 6= A2A1

this is mandatory, in order to have the exponential of the sum: sum
is a commutative operator also with matrices, so the two operations are
incompatible.

How can we fix our theory? Well, the exponential of the matrix can be
evaluated, using Taylor expansion, as:

eA ∼ I + A +
A2

2
+ ...

We have to evaluate this product:

eA1TONeA2TOFF

this product, as we have just said, is non-commutative; we can introduce
some more hypothesis: all the times we have supposed that the time constants
are far higher than the switching period TSW; if this is true, we have that the
time constant for the matrices are far larger than TON and TOFF, so, when we
are evaluating A1TON and A2TOFF, we have small matrices, in a wide sense
(we can evaluate this by finding the norms of the matrices in some sense and
verify this idea). What we can do, so, is use the Taylor expansion up to the
first term, and neglect all the other terms!

eA1 ∼ I + A1TON

eA2 ∼ I + A2TOFF

so:

(I + A1TON)(I + A2TOFF) = I + A1TON + A2TOFF + A1A2TONTOFF

but there is a second order term, related to the product of the two ma-
trices! From one side, it makes our system be non-commutative; from the
other side, it is a second order term, so it is smaller than the others, and can
be neglected! So:

eA1TONeA2TOFF ∼ I + A1TON + A2TOFF
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This is commutative, so, given our hypothesis, this derivation is right.
Our system, now, is described by this differential equation:

ẋ = Ax + Bu

The variables of this system are: iL, v0, v̂in, d (the duty cycle). Let’s write
the system as two parts: steady state (constant values) and small signal:

iL = IL + îl

v0 = V0 + v̂0

v̂in = VIN + v̂in

d = D + d̂

where the hat parameters are the variations around the steady state; the
capitals variables are the steady-state values.

The two equations, considering steady state and variable terms, are:

d

dt

(

IL + îl

)

= −1 − D − d̂

L
(V0 + v̂0) +

1

L
(VIN + v̂in)

d

dt
(V0 + v̂0) =

1 − D − d̂

C

(

IL + îl

)

− V0 + v̂0

RC

These are non-linear differential equations: we have no switches (the
system is time-invariant), but there are terms like d̂v̂0, so the product of
two variable terms, which introduce non-linearities.

In order to perform the linearization, we can introduce this hypothesis:
if the hat terms are very less respect to the DC terms, we can neglect the
second order terms. We will do it later.

Let’s consider these equations, with just the DC terms:

d

dt
IL = −1 − D

L
V0 +

VIN

L

d

dt
V0 =

1 − D

C
IL − V0

RC

so: the derivatives of constant (DC) terms are null, and we can say that:

−1 − D

L
V0 +

VIN

L
= 0 −→ (1 − D)V0 = VIN
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and

V0

VIN
=

1

1 − D

but... This is just the DC gain of the boost! It is a check: what we have
done is all right!

About the second equation:

1 − D

C
IL − V0

RC
= 0 −→ (1 − D)IL =

V0

R
so

IL =
V0

R(1 − D)
=

I0

1 − D

this transforms the current from right to left, with an inverse relation.
This was just a check; now, let’s focus on important results:

d

dt
îl = −1 − D

L
v̂0 +

d̂

L
V0 +

d̂v̂0

L
+

v̂in

L

d

dt
v̂0 =

1 − D

C
îl −

d̂

C
IL − d̂îl

C
− v̂0

RC
These are our non-linear signal equations; if and only if we are in

small signal condition, we can neglect the second order terms; second order
conditions are:







D � d̂

IL � îl
V0 � v̂0

So, if we satisfy these conditions, we can linearize our equation, simply
by erasing all the terms, re-writing them without the second order terms:

d

dt
îl = −1 − D

L
v̂0 +

d̂

L
V0 +

v̂in

L

d

dt
v̂0 =

1 − D

C
îl −

d̂

C
IL − v̂0

RC

Now, our purpose is to find the transfer function: let’s move to Laplace
domain:

sîl(s) = −1 − D

L
v̂0(s) +

d̂(s)

L
V0 +

v̂in(s)

L
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sv̂0(s) =
1 − D

C
îl(s) −

d̂(s)

C
IL − v̂0(s)

RC

Those equation are algebraic and linear! This means that we can use the
superposition effect: we have two inputs, but, if we want to find the transfer
function between the duty cycle and the output voltage, we just have to set

v̂in(s) = 0

A remark: this is not neglecting or other: we are using the linearity
property, and trying to calculate the transfer function.

Let’s derive the expression of îl(s) from the first equation, then substitute
it into the second one:

îl(s) = −1 − D

sL
v̂0(s) +

d̂(s)

sL
V0

so:

sv̂0(s) =
1 − D

C

[

−1 − D

sL
v̂0(s) +

d̂(s)

sL
V0

]

− d̂(s)

C
IL − v̂0(s)

RC

let’s clean some terms:

v̂0(s)

[

s +
(D − 1)2

sLC
+

1

RC

]

= d̂(s)

[

1 − D

C

V0

sL
− IL

C

]

Now, two observations: as already seen:

V0 =
VIN

1 − D

IL =
V0

R(1 − D)
=

VIN

R(1 − D)2

We can substitute it, and obtain:

v̂0(s)

[

s +
(D − 1)2

sLC
+

1

RC

]

= d̂(s)

[

1 − D

C

VIN

sL(1 − D)
− VIN

RC(1 − D)2

]

so, let’s bring out VIN, simplify, and multiply both members times sLC:

v̂0(s)

[

s2LC + (D − 1)2 +
sL

R

]

= d̂(s)

[

1 − sL

R(1 − D)2

]

VIN

Finally:
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v̂0

d̂
= VIN

1 − s L
R(1−D)2

s2LC + sL
R

+ (1 − D)2

let’s take out (1−D)2 from the denominator, and obtain the final expres-
sion:

v̂0

d̂
=

VIN

(1 − D)2

1 − s L
R(1−D)2

s2LC
(1−D)2

+ s L
R(1−D)2

+ 1

Now, with this expression, we are able to design our controller; why did
we set v̂in = 0 ? Well, for two reasons:

• why not? This is a linear system!

• Because, when we design our loop gain, we are not interested in the
input, but in the duty cycle, which is the control parameter!

A2A1

β

Now, we have this transfer function, represented as product of DC gain
and frequency-dependent part; if we calculate the limit for infinite time:

lim
s→0

v̂0

d̂
=

VIN

(1 − D)2

This is what we’ve found with our former analysis!
The poles are moving, depending on D:

fP =
1 − D

2π
√

LC

so, our frequency limits depend on duty cycle!
Very very bad news: the worst information we get from this transfer

function is the negative sign at the numerator: it means that we have a right
half-plane zero! Control a system like this is very very hard!
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Some additional notes

Now, let’s consider a circuit like this one, which considers the presence of an
ESR RS on the output capacitor:

bc

With this ESR, at the numerator we have (it can be proof) a second zero,
this time on the left half-plane (a good zero!): something like:

(1 + sC0RS)

By changing the ESR, we change the position of this zero; this zero gives
us stability, because it increases the phase margin: if we change the capacitor,
even the producer, we risk to change the ESR, making our system unstable.

All the SoB (Son of a Boost) converters have this zero at the right half-
plane: these are very hard to correct, even harder than right-half-plane poles!

If we analyze a buck-boost converter instead of a boost converter, we have
almost the same expression: maybe just different gains. Čuk converter has
a more complicated transfer function, but here we can move the zero to left
half-plane, changing the circuit a little bit (a sort of a snubber).

Is there some way to see a right half-plane zero? Some physical meaning?
Well, let’s consider a boost converter; what is ID, the diode current? It is
something like this:
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TON TOFF

TSW

Imin

Imax

t

ID

the average of this current is just V0

R
, and it is related to the output

current!
Now, let’s suppose that we increase suddenly the duty cycle, in order to

obtain a larger output voltage; if we do it, it happens that we increase the
duty cycle, and decrease (1 − D): the switch current goes up, upper respect
to the previous cycle, and we obtain something like this:
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Before doing this change, the current was lower as peak, and larger. By
increasing the duty cycle, what we have done is reduce (1 − D), so we have
less time to deliver energy to the output; eventually, these peaks will be
high enough to have higher peak current, but less area: the fact that we are
delivering less energy, is related to the fact that we have this right half-plane
zero.

If we have an actual voltage source, things become worse: instead of two
equations we have three equations, because of the added state variable.

2.2 Switch-average method

We have studied a first method to analyze a boost converter in CCM, and
what we have got was the boost CCM VM (Voltage Mode), which has two
moving poles (respect to d), one right half plane zero, and a left half plain
zero, due to the ESR. If we repeat the same analysis for a buck-boost con-
verter, we obtain something similar.

Now, we are going to introduce another method to analyze circuits: what
we did last time is not the smartest way to work: we wrote down all the
equations for the circuit, and did calculations; when a circuit is simple like
the previous one, no problem! If we have something like this:

bc

bc

with a circuit like this we have to write down one equation for each
component, and this is very boring.

When we have to study a circuit like the previous one, what we usually
do? Well, we take out of the circuit the non-linear part, and substitute it
with an easy model (usually, with the small-signal model, which is an LTI
model); then, we can do calculations on the LTI circuit, which is more easy.

Now, we are going to introduce this method, invented by Vorperian, on a
buck converter; before doing this, let’s see, in the circuits we studied, which
are the critical elements:
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bc

bc

bc

buck converter

boost converter Čuk converter

buck-boost converter

What happens in all those topologies, is that switch and diode are, in
some way, connected together. So, we have to average and linearize just the

bad guys: the switch and the diode. What to do? Well, let’s start from a
buck converter: we have a sub-circuit like this:

b

b

bA C

P
b

vAP vCP

We have to average and linearize this circuit: this is the part which makes
our converter time-variant (and then non-linear); as we obtain an LTI model,
we can re-substitute into the former circuit, and study all the quantities we
want.

In our sub-circuit we can identify three terminals: A terminal(active
terminal, because it is the pin of the active switch); P terminal (passive

terminal, because it is the pin connected to the diode, which is a passive
switch); C terminal (common terminal, because it is the node between the
two devices, so in common to the two devices).

A remark: generally we don’t put an inductor on the node a, because if
the switch opens the inductor gets mad (if we stop the current through the
inductor the derivative of the current, which is proportional to the voltage
across it, goes ideally to infinity); same story, if we want to put an inductor
in series to the diode.

Now: considering TON (related to the duty cycle1 d) the time when the

1Let’s remark that we are performing a dynamic analysis, so all those quantities are

variable, and we are referring to the ISO conventions
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switch is closed, and so TOFF the time when the switch is open (and the diode
conducts), we can wrote down some equations.

• During the TON phase, so during d:

{

vCP = vAP

iA = iC

• During the TOFF phase, so during 1 − d:

{

vCP = 0
iA = 0

in fact, during this phase, the diode is conducting, so the actual voltage
equals the voltage drop on it.

Those equations are linear, time-invariant, and algebraic! Now, we don’t
have any differential equation, components with memory or something else.

Now, we have to average those equations, in order to obtain just one set
of equations: the weights of our equations are d and 1 − d; so:

{

vCPd + vCP(1 − d) = vAPd + 0
iAd + iA(1 − d) = iCd + 0

so, cleaning, we obtain:

{

vCP = vAPd
iA = iCd

We have still two algebraic equations, but now they are non-linear: many
of the terms are given by the product of two variable terms! If we re-name
d to n, we obtain substantially the equations of a transformer (which can
handle also DC values):

b

bA

P
b

vAP vCP

bC

1 : d

iA iC

What do we need so? Well, we can remove our switches, and put this
average model instead of our terms!
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Proof of this method

We have said that all of this stuff works; we have to prove it! Let’s consider
something like this: defined a switching function q(t) (in time domain),
which describes the behaviour of the switch SW, we have something like this:

t

q(t)

1

0

The average of this function is the duty cycle! In time domain, so without
using approximations, we can write that:

vCP = q(t)vAP

and

iA = q(t)iC

let’s calculate the averages of these quantities:

{

vCP = vAPq(t)

vA = iCq(t)

Now, a problem: our desire is to say that the average of the product
equals the product of the averages; this is not true, in general, because, in
order to have this, we need statistically independent variables, or one
constant; we actually don’t have any constant value respect to another, but
we have that vAP and iC change slowly respect to q(t), due to the τ constant
which is, for our hypothesis, much more larger of the switching period: we
are assuming that the spectrum of the switching part and the one of the
changing part are distant (this is not a great idea, but it works); so:

{

vCP ∼ vAPq(t)

vA ∼ iCq(t)
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This method is much more powerful than the state space one: we are
using only simple equations, and just for the time-varying elements; the main
reason is that now we are handling circuits, instead of a lot of equations: if
we give it to a simulator like SPICE, it will calculate without problems all
the quantities!

In SPICE we can introduce a model like this:

b

b

b

i1
b

di2 dv1

i2

v1

This model is non-linear, so we have to linearize it, and in order to perform
this operation we can use the same trick we used before. Let’s decompose
all or quantities in two parts: bias point and variable part:

vCP = VCP + v̂cp

vAP = VAP + v̂ap

iA = IA + îa

iC = IC + îc

d = D + d̂

If we are assuming signal condition, so if we have that:

VCP � v̂cp

VAP � v̂ap

IA � îa

IC � îc

D � d̂
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we can neglect all the second order terms, and maintain just the first
order terms!

Now: let’s re-write our equations with the bias + variable notation:

{

VCP + v̂cp = (D + d̂)(VAP + v̂ap)

IA + îa = (D + d̂)(IC + îc)

so, if we expand all the terms, we obtain something like:

{

VCP + v̂cp = DVAP + Dv̂ap + d̂VAP + d̂v̂ap

IA + îa = DIC + Dîc + d̂IC + d̂îc

Now, if we are satisfying the small-signal condition, we have just:

{

VCP + v̂cp = DVAP + Dv̂ap + d̂VAP

IA + îa = DIC + Dîc + d̂IC

So, each equation has a DC part and two AC parts. Now, separating the
two parts, we can obtain two models: the bias point model, and the small-
signal model: this is like what we do studying a transistor circuit: we have a
model which permits to evaluate the bias point of the circuit, and one model
which can describe, starting from the bias point parameters, the behaviour
of the variable part of the quantities of the circuit.

The bias point model is something like this:

b

bA

P
b

VAP VCP

bC

1 : D

where

{

VCP = DVAP

IA = DIC

What about the small signal model? Well, we have something these
equations:

{

v̂cp = Dv̂ap + d̂VAP

îa = Dîc + d̂IC

We have again a transformer, but also something else: there is at the left
side another current term (which is pumping down current, because we have
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that the current inside the node A is given by the sum of two contributes), and
at the right side something similar, with a voltage: those effects are modelled
with two controlled sources. So, this is the final small-signal model:

b

bA

P
b

ICd̂

bC

1 : D

VAPd̂

Application example: buck-boost converter

Let’s try to apply this method on a converter: the buck-boost one. We have
something like this:

bc

The first step is to identify the three nodes: A, C, P; this, in order to
understand how to draw the equivalent circuit. Our purpose now is just to
re-draw the circuit, and obtain the bias point equivalent. We are handling
DC voltages, so a capacitor is an open circuit, and an inductor is just a piece
of wire; we simply have:

b

bA

P
b

b C

1 : D

b

we can find the output voltage, using this loop: at left we have (using the
transformer’s equation) V0

D
, so:

Vin +
V0

D
= V0

so
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V0

(

1 − 1

D

)

= Vin

so

V0

Vin
= M =

D

D − 1

we already knew it!

2.2.1 Dynamic analysis of a buck converter

Now we are going to perform the dynamic analysis of a buck converter; the
basic circuit is the following one:

We have to identify (this was already done in the last schematics) the
three points A, B, C; once we have done it, we can substitute the small
signal model, and obtain something like this:

A

P

ICd̂

C

1 : D

VAPd̂

In small signal model analysis, all the DC terms become null: the voltage
generators (the batteries) become a short circuit. In this particular case, we
have that IC = I0; the short circuit makes the current generator and the
transformer be useless (it covers them), so the equivalent circuit we have to
use is simply this:

P

C

VAPd̂
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A remark: we said that, from the small-signal point of view, all the DC
terms are zero; we have dependency on VIN, which is zero, for the small signal,
but VIN is zero just in the circuit: it is a parameter of the bias point, and we
need it in order to do the calculations! Our idea is: once we calculated the
bias point parameters, we can use them in order to calculate the quantities
varying around them: as we used to calculate gm in a transistor circuit, now
we use VIN or IC or other stuff to take account of the bias point, even in the
small-signal model.

Now, we are looking for v̂0 over d̂: this is the transfer function which uses
the duty cycle as input (we are interested in it because we need this stuff to
analyze the control system). We can see that this is simply a low-pass filter
transfer function: by using simple circuit theory we obtain

v̂0

d̂
= VIN

1

s2LC + sL
R

+ 1

This expression has two complex conjugate poles: those poles are moving,
because R is a variable parameter (the load can change), but the frequency
is just given by LC: what actually changes is just the damping, ζ !

The radius of this circle is related to the ω of the poles, and their position
on the circle to the ζ parameter, which changes with the load R!

Some remarks: the total gain of the circuit changes with the DC input
voltage, VIN; the expression calculated does not take account of the ESR
RS, which introduces a zero in the left half-plane of the Laplace domain:
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(1 + sCRS). At the denominator, we have a small change, because, instead
of R, we have R + RS; RS is very lower than R, so the change is very little.
The only interesting part is the zero, which depends on the parasitic ESR: it
can change for many reasons: temperature, lifetime, manufacturer.

Real voltage source

What happens if our voltage source is real? Well, we have something like
this:

EMI
filter

We have an EMI filter (which can contain inductors or something else);
watching back into the EMI filter, what we see is an impedance. When we
introduce the model of the circuit, we have something like:

1 : D

We want to remark some things: now, if we want to show v̂0/d̂, and
it will have the same denominator (unless we introduce some other extra
poles with the EMI filter); at the numerator, we get something bad: when
d̂ goes up, we increase the v̂0 term, and ok; when we increase d̂ what we
obtain is also to increase the current through the controlled source at the left
side; if we bring this current source to the right side (using the transformer’s
constitutive equations) we still have a generator which pulls down current,
which introduces a negative contribute respect to the first one; what we
expect at the denominator is that we have a positive term, and a negative
term (functions of d̂): the two terms are opposite! Another observation: Zin

is an impedance, a complex quantity: there will be some frequency where
the negative term is the most important, another one where the positive is
more important: the gain of our system will be positive in a frequency range,
and negative in another frequency range! This means that feedback changes
its sign with the frequency: it is the classical situation connected to a right
half-plane zero!
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We have to introduce an EMI filter, and it can introduce instability, but
usually it doesn’t disturb our converter; there is a paper which explains how
to design the converter.

Measurements observations

When this method was discovered, in order to verify if it works, some re-
searchers tried to make some measurements, and discovered an interesting
thing.

Let’s consider this model:

1 : D

This is substantially a LC filter (with an RL, an ESR relative to the in-
ductor, and some ESR relative to the capacitors). The researchers discovered
that the Q factor of this LC circuit in the theoretical model is higher than
the actual one. Why?

Let’s consider the buck converter, and the input current iA, which is more
of less something like this:

t

iA
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The average input voltage vAP was supposed equal to VIN; actually, we
have a vIN which is something like this:

v1

v2

Why? Well, every time we close the switch, we take current from the
input capacitor, which has an ESR: every time we close the switch the current
produces a little voltage drop on this ESR, and we lose some input just for
the reason that we are closing the switch, and performing the measurement!

When we do the average calculations, we can say that:

vAP = VIN

this is almost true, but we have a trouble: every time we sample with
our sampling system (the active switch), we reduce the level, and we sample
the lower level of the voltage! It is like if we try to measure the voltage
level of the distribution network with a lamp: as we turn the lamp on, the
voltage decreases, because of the losses introduced by the load! Another way
to understand this fact, is: we are sampling at fSW, a signal which changes
at fSW: every time we close the switch we take the same value, because we
are not satisfying Nyquist’s rule.

Input voltage so behaves like a square wave, with two levels, v1 and v2;
we already know v1, but which is v2 ?

Well, we have that v1 − v2 is the amplitude of the step; when we close
the switch, the variation comes from the voltage drop on the ESR. We have,
given the ESR RS:

v1 − v2 = iCRS

Where RS is the ESR of the input capacitor.
We can perform our average calculations taking account of this difference:
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v2D + v1(1 − D) = vAP

but we can substitute to v1 what we have found:

vAP = v2D + (v2 + iCRS) (1 − D)

so, cleaning this expression:

v2 = vAP − iCRS(1 − D)

where vAP = vIN.
This is the actual voltage we have at the input of our converter; if we

consider the small-signal approximation, we can say that:

v̂0 = −îcRS(1 − D)

This means that our signal model has one extra term; we can model it
as:

1 : D

D(1 − D)RSîC

We can take it at the right side of the transformer, simply by multiplying
by D (the transformer ratio); the final observation is this one: we have
something which has a voltage drop on it proportional to the current flowing
through it: a resistance!

1 : D

D(1 − D)RS

This is because we have the lower Q: the presence of an extra resistance
in the circuit.

A remark: this a resistance which does not dissipate DC! It is just a
resistance present in the small signal model! It is just an AC resistance, like
the rπ for BJT or the output resistance we calculated previously, ∂V0

∂I0
.
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Final observations

We have seen that this topology has two complex conjugate poles; what we
don’t emphasized is that:

fp =
1

2π
√

LC

The capacitance value is important: we care about it, even if it is elec-
trolytic: in the dynamic modelling of the circuit also µF are important!

A remark: every time we have a converter with an electrolytic capacitor,
so with an ESR, it introduces a zero in the left half plane of the Laplace
domain.

2.3 Circuit average method - DCM analysis

We are going to analyze DCM, in a converter which is not a buck: it is stupid
to use DCM in a converter which does not need it for any reason! CCM is
better because it permits to reduce stresses on the components, so, if there
are no control issues, why use DCM?

A boost converter is usually designed in DCM (unless we are designing
a PFC: in this case it works with a very low frequency range, so, thanks to
its short bandwidth, we can also design the boost PFC in CCM, because the
right half plane zero is not important yet).

Now we are going to analyze the buck-boost converter in DCM, with a
new method: the circuit average: this is slightly better for DCM analysis.
Let’s consider this schematic:

bcbc

The basic idea is: we have to average it, piece by piece; a capacitor, an
inductor, a resistor, are devices which realize the behaviour of a capacitance,
of an inductance, of a resistance: the average value of these devices will be
the values of the quantity they want to realize.

About the switch, things are different: when the switch is open, we have
that the voltage across it is non-zero, and the current is zero; when it is closed,
voltage across it is zero, and current different from zero (this, ideally). In
order to average this bipole we need something which has on it some voltage,
and some current: a controllable voltage or current source:
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bcbc

bcbc

Voltage or current is almost the same: usually calculations can be harder
or simpler with one of the two, but doesn’t change so much (most of the
times we will use a current source).

So: let’s substitute the diode with a controlled current source:

This is the output stage of the buck-boost converter: on our sub-circuit
we have a current equal to iD. Which is the average current on the actual
diode?

We know that the current on the diode has a triangular waveform; what
we can do is, so, something like this:

iD =
1

2

T2Imax

TSW

Now we just have to find all the values involved in this equation. Imax

equals:

Imax =
vIN

L
T1

this is known from the theory we already studied. What about T2? Well,
we can use also the other equation:

T2 =
Imax

−v0

L

but we know Imax, from the previous equation!

T2 =
vINT1

L

−v0

L

= −vIN

v0
T1

So, if we substitute in the average of the diode current, we obtain:

iD =
T1

vIN

v0

vIN

L
T1

2TSW
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so, if we do some cosmetic arrangements, multiplying and dividing by
TSW, we easily obtain:

iD =
d2v2

IN

2fSWLv0

This is a time-invariant non-linear equation (we are performing as usual
a dynamic analysis, so all our parameters have bias point and variable con-
tributes). In order to obtain a linear model, we have to linearise this current
source: one way is to use the same old way, decomposing the contributes in
bias point and variable part; another way is to explicit the Taylor expansion,
up to the first term, for all the variables involved in the system. We have
that:

iD = f(d, vIN, v0)

we can expand it using Taylor:

iD ∼ iD
∣

∣

bias point +
∂iD
∂d

∣

∣

∣

∣

bias point
(d − D)+

+
∂iD
∂vIN

∣

∣

∣

∣

bias point
(vIN − VIN) +

∂iD
∂v0

∣

∣

∣

∣

bias point
(v0 − V0) =

= iD
∣

∣

bias point +
∂iD
∂d

∣

∣

∣

∣

bias point
d̂+

∂iD
∂vIN

∣

∣

∣

∣

bias point
v̂in +

∂iD
∂v0

∣

∣

∣

∣

bias point
v̂0

These three derivatives are numbers, because they are evaluated in a
specific case: around the bias point! Let’s define three parameters:

A ,
∂iD
∂d

∣

∣

∣

∣

bias point
=

2DV 2
IN

2LfSWV0
=

DV 2
IN

LfSWV0

B ,
∂iD
∂vIN

∣

∣

∣

∣

bias point
=

2D2VIN

2LfSW

=
D2VIN

LfSW

C ,
∂iD
∂v0

∣

∣

∣

∣

bias point
= − D2V 2

IN

V 2
0 2LfSW

Let’s write down this last coefficient in a different way; if we remember
that, for the cyclostationary condition, we had that

V0

VIN
= D

√

R

2LfSW
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we have that:

(

V0

VIN

)

−2

=
2LfSW

D2R

substituting into C, we obtain:

C = − D2

2LfSW

2LfSW

D2R
= − 1

R

this coefficient is just a conductance, the reciprocal of a resistance! We
already found this result, when we analyzed the output resistance!

After the linearisation process, we have this equivalent circuit:

iD
Ad̂

Bv̂in

−Cv̂0

Now we have a linear circuit: this means that we can use the superposition
principle!

We have two input variables: d̂ and v̂in; what we can do is to set to zero
the input voltage v̂in, because it is useless for our purpose (obtain the transfer
function to control):

Ad̂
R R

C0

We have that V0 is negative to positive; using this convention, the coef-
ficient C = −R−1 becomes positive: it was negative just because we didn’t
consider the negative sign of v0: if we consider this, now current on C goes
up, respects the convention, and we can remove the sign. By simple algebra,
we have to calculate v̂0, as:

v̂0 = −Ad̂
R

2

1

1 + sC R
2

this, because we have two R resistances in parallel. If we substitute the
value of A and divide by the variable duty cycle both the members, we obtain:

v̂0

d̂
= −R

2

DV 2
IN

LfSWV0

1

1 + sC R
2
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An idea: by some algebraic manipulations, we can compact this coeffi-
cient, remembering the relation:

V0 = VIND

√

R

2fSWL

Is it true? Am I allowed to use this expression into the dynamic be-
haviour? Well, we can do an a posteriori proof, considering s → 0 (using
so the final value theorem, relative to the Laplace transform operator); what
we can do is observe that this is the A coefficient, so a coefficient relative to
the bias point of the circuit, evaluated in the bias point, so it is related to
the parameters we want to substitute.

Now, let’s obtain a different expression; for s → 0:

v̂0

d̂
= −R

2

DV 2
IN

LfSWV0

= −DV 2
IN

LfSW

R

2

1

DVIN

√

2LfSW

R
= −VIN

√

R

2LfSW

So, we have:

v̂0

d̂
= −VIN

√

R

2LfSW

1

1 + sC R
2

What we have forgot? Well, the ESR! If we want to take account of it,
we have:

v̂0

d̂
= −VIN

√

R

2LfSW

1 + sCRS

1 + sC
(

R
2

+ RS

)

So, for the buck-boost converter in DCM, we have a pole and a zero:

fp = − 1

πRC

fz = − 1

2πCRS

Let’s watch our circuit:

bc
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we have two dynamic elements, and just one pole and one zero! Where
is the second pole? Well, we said that having a pole corresponds to have
memory, store energy, and something else: what we can say is that our
inductance has a current which starts from zero, increases, and then comes
back to zero, before the end of the cycle: at each cycle the memory is erased,
the energy is released. Saying that the circuit has short memory, means that
it has a short time constant, so that it is at a very high frequency: this is
a fast decaying pole, an exponential with a short time constant, so this is
above fSW

2
, so over what our model can handle: our model can handle just

up to half of the switching frequency!

t

So: for boost converter we have one moving pole, and one ESR zero: the
L pole is at high frequencies, so our model doesn’t work.

What about this result? We don’t have the right half plane zero, and this
is amazing! We don’t have particular issues to control this circuit!

Is the right half plane pole actually disappeared? Well, in DCM it hap-
pens that, if we analyze iL, there is something like this:

t

If we suddenly increase the duty cycle, it happens that the current in-
creases, and then decreases with the same decreasing slope it would have:
our output will get more energy! We get more energy, with an increasing
duty cycle, so we don’t have the effect of the right half plane zero! Actually
we have it, but it doesn’t influence in any way our system! We have more
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time to charge the system, but also more energy, and this does not happen
in a system with a right half pole zero!

During TON, the load is supplied by the right capacitor, which is designed
to maintain the output voltage to a certain level. If we have an extra delay,
due to the increase of the duty cycle, the capacitor loses too much charge,
and we have a little output voltage decrease, due to the right half pole zero:
does it matter? No! It is at a very high frequency, so it doesn’t matter! This
because this lasts for a very short fraction of cycle: after this fraction we
have the ordinary voltage!

2.3.1 Final observations

Our transfer function has one pole and one zero:

t

v̂0

d̂
= −VIN

√

R

2LfSW

1 + sCRS

1 + sC
(

R
2

+ RS

)

Which conditions on my variables give us the maximum DC gain? Maxi-
mum R, maximum VIN. What happens if R goes up? Well, we have that the
DC gain increases, but at the same time the position of the pole decreases
of a factor equal to the square of the increase of the DC gain (one depends
on the square root of R, the other on R).

What does it happen? Well, the zero position is always the same: it
depends on RS: as we increase (in logarithmic units) with R, the frequency
of the poles goes left of the double of what we gained; what happens is
something like this:
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R

2.4 Design of the controller

The basic topologies on which we are interested to design a controller, are:
buck converter in CCM, boost converter in CCM (only for PFC case), some-
times boost converter in DCM (actually, few times) and buck-boost converter
in DCM. This last one is one of the most used converters, especially in its iso-
lated version (the flyback converter): it is very cheap, even if it is a low-power
converter.

2.4.1 Some preliminary aspects

Our control part needs at least two blocks: given our power converter, we
need an error amplifier, which samples the output voltage, compares it to
a reference voltage, and so changes the duty cycle which drives the MOS
switch.
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power converter

PWM
modulator

Error
amplifier

The error amplifier gives an error signal, and, in order to translate it into
a digital signal, we need a PWM (Pulse Width Modulation) modulator: this
is substantially a circuit which generates a duty cycle starting from an analog
signal. At the input of the PWM modulator we have a voltage, and out of
it a duty cycle: dimensionally, this is the reciprocal of a voltage, so its unit
is V−1. If the system has a gain in volts, and we are multiplying it for the
reciprocal of volts, what we obtain as loop gain is dimensionless!

How can we realize this block? Well, we need something like this:

Ve

t

Vtriangle

Ve

b

b

in the non-inverting input we introduce the signal from the error amplifier
(which will be designed later); in the inverting input we introduce a sawtooth
waveform. How does it work? Well, we have something like this:
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t

What we get in the output is a signal which is higher or lower respect
to the input, so the duty cycle increases or decreases, because pulses have
different width! This is called natural PWM modulator.

A remark: if the signal is too high respect to the maximum value of the
sawtooth, the duty cycle is all the times equal to 100% ; dually, if it is all
the times under the minimum value of the sawtooth, it is about 0%.

t

In general we have a waveform like this one
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Vtriangle

where input voltage can span through this range, and change the duty
cycle.

Which is the gain for this natural modulator? Well, gain GPWM can be
defined as the derivative of the output quantity respect to the input quan-
tity; the input quantity is the signal Ve; the output quantity, which is the
duty cycle, changes linearly, because the width of the output signal depends
linearly on the amplitude of the input signal. We can say that:

GPWM =
1

Vtriangle

this can be explained: if we have a triangular waveform with amplitude
equal to 1 V, we need a change of input voltage of 1 V in order to go from
the 0 % to the 100 % of duty cycle; offset is not important.

Standard controls have a voltage almost equal to 3 V (of amplitude of the
triangular waveform); for modern controllers it is smaller, due to the voltage
decrease in the new processes: we can reach also 1 V.

Some remarks: if we use this PWM modulator, we have no phase delays,
no poles, no zeroes; there are other kinds of PWM modulators, which have
these issues. In switch mode power supplies the PWM modulator uses a
sawtooth wave; in power inverters (where as inverter here we are meaning
the DC to AC converters, used for driving motors) PWM has usually a
symmetrical triangular waveform.

2.4.2 A theoretical introduction to our controls

Let’s put together power converter and PWM modulator, in order to realize
our controls. Basically, we have to handle two families of transfer function
to control:
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buck converter CCM buck-boost converter DCM

For buck CCM, the gain at low frequency is:

Mbuck,CCM =
vIN

Vtriangle

and for buck-boost DCM, we have:

Mbuck−boost,DCM =
vIN

Vtriangle

√

R

2LfSW

So, we want to design, starting from these equations, a closed loop system;
we want to design a reasonable loop gain T , in order to have the performances
we want. The basic idea we will use, is to have as loop gain T an integrator;
this choice has some notes, we have to remember (advantages, disadvantages
and some remarks):

• an integrator has high low-frequency gain: this, because the higher is
the crossover frequency (the frequency at which T equals 0 dB), higher
is the gain at low frequency; this, basically because the loop gain has
one pole in the origin (it is a type 1 system); an advantage of this
point is that having a type 1 system means having no DC error: gain
is so high that we don’t have to worry about DC errors.

• phase margin is about 90◦, and this also at the cross-over frequency: in
order to get instability, we have to delay of others 90◦; this points needs
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some more explanations: 90◦ is not a good margin, because this means
that our dynamic response is quite slow; actually, if we try to design a
controller with this margin, we have something like 50◦ (or similar) of
phase margin, which is a good margin: this is not a conservative choice
as it seems;

• the crossover frequency, fc, must be at least one half of the switching
frequency (in order to have valid models: after half of the switching
frequency, we are unsatisfying the Nyquist’s rule, so our model does
not work); actually, we choose a crossover frequency like:

fc ∈
fSW

6 ÷ 10

this, because we don’t want to inject noise into our system: we are
doing some kind of voltage comparison, and if we have noise at this
time, we have feedback problems.

Let’s discuss this last point: if we increase fc our system will be faster to
recover from bad states, like load changes, but it will be more susceptible to
noise. Our I0 behaves like this:

V0

t

V0

I0

if load increases, I0 goes up, so V0 goes down, and the control tries to
increase the duty cycle; what we obtain is the previous time response. How
much is the exponential duration? Well, we can evaluate it by evaluating τ ,
which is:
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τ =
1

2πfc

again fc: higher is the crossover frequency, lower is τ . The actual time
behaviour of the waveform can be different: maybe we have other poles, so
we can have something like

if our margin is less than 90◦, it means that we have more than one pole
in our system, and the behaviour may be this. High fc means lower τ ,
unless one case: if we have two switch mode power supplies, we can have a
behaviour like this:

one waveform has DC errors, because it has low gain, and the other one
has more peaks; which is better? Well, it depends:

• if we emphasize the fact that our system must have a little integral
error, so it means that we have to compare the area up and down to
the average of the value:

∫

|Vactual − Vnominal|
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in the waveform without DC errors, we have less problems, because
those peaks are here for a very short time, so don’t change too much
the integral error;

• the other waveform has an advantage: its peaks are lower, so if we
have to drive something with a voltage which must not be very precise,
but stay absolutely in a certain range, it is the best choice: doesn’t
matter how long are those peaks, because if we are driving for example
a microprocessor, working at high frequency, it surely will sense the
peaks, and may be damaged.

Buck-boost converter DCM case

Now, how can we design this error amplifier? Well, let’s study all this stuff
with a theoretical point of view: we know the behaviour of the transfer
function of a converter (here we are considering a buck-boost converter); we
have something like this:

T

we know which is our desired final loop gain T , and the transfer function.
How can we design this controller? Well, easy: simply, we can see what we
have in the actual transfer function, and add some gain, some poles and some
zeroes, in order to obtain that the product (which is the sum in the Bode
plot) of the transfer function and of the control function equals the desired
loop gain (ideally). What is missing from one curve to the other? Well,
something like this:
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Compensator

T

we first introduce a pole in the origin, in order to go down with 20 dB/dec,
until the transfer function reaches its pole; at this point we add a zero to the
control transfer function, because we have to go down with the slope which
we already have with the basic transfer function; then, again, another pole,
when we reach the zero of the transfer function of the controller.

Buck converter CCM case

What about buck converter? Well, we have something slightly difficult:
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What should our compensator provide? Well, it must start with the usual
pole in the origin, so introduce two zeroes, and a pole when the slope of the
transfer function of the buck controller becomes equal to - 20 dB/dec.

How can we introduce those zeroes? Well, we can basically follow two
ideas: two complex zeroes, or something different. If we try with two complex
zeroes, and consider a system like this one: at the crossover frequency, we
have 90◦ of phase margin: this is a very stable system. Someone can think
that, when loop gain is larger than 1, phase margin is negative! This system
is stable: phase margin is right, gain margin is a liar! Gain margin is not
saying the truth: this system is stable!

There is a problem: this can be the transfer function of a buck power
supply, and we know that the gain of its transfer function depends on vIN:
if it decreases too much, and we have that the interception with the 0 dB
axis is before the poles, this system becomes unstable: systems like these
are called marginally stable, because a simple change of the gain can bring
this system to instability. There are cases when voltage goes low: the start-
up of the converter! When we have the starting transient, the voltages of the
system don’t step-up, they ramp up, so we can stay locked into the unstable
situation, and we don’t have to risk something like this!

The solution to this fact is to use two real zeroes instead of a single zero,
and to put them by this way: one, before the two poles, and one in proximity
to the poles.
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Compensator

T

Why all this problems? Well, we have to check the phase: the phase of
a zero is +90◦, and it increases in two decades (from one decade before the
pole to one decade after the pole); what about the phase of two conjugate
poles? Well, it decreases of 180◦, but we don’t know how! It depends on the
damping factor of the poles! If the Q of these poles is very high, phase goes
down steeply, quickly! This means that we have to avoid to have too much
phase shift from the poles, and one method is to put our zero in a position
which can compensate most of the phase before it shifts! The second pole will
help the first one, but it will have less work (and avoid a marginal stability
situation).

Just one more fact: our compensator, from fc, has constant gain; this is
not good, because this means that it injects noise into our loop. What we
have to do is to put a pole around fSW

2
, in order to decrease noise. This pole

is not aimed to control the system, but just to decrease its bandwidth:
this pole is called closure pole.

A remark: the standard name convention for power electronics commu-
nity is: call each compensator with a name depending on the number of
poles it has. The previous (relative to buck-boost DCM) compensator is
called type 2 compensator, because it introduces just two poles; this one
is called type 3 compensator, because it has three poles. Control guys
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call the first controller PI controller, because it has an integrative part,
and a proportional part (before the last pole); this second compensator is
called (from control guys) PIP compensator (Proportional Integrative Pro-
portional). Usually we want to design type 2 converters: type 3 converters
are used just for buck converter in CCM: almost everything else can be con-
trolled by a type 2 compensator.

2.4.3 Practical control: compensators

Type 2 compensator

How to design in practice those compensators? Well, let’s start from the
simplest case: the type 2 compensator. The solution we will use is this one:

b b

b

b

b

b

C1

C2R2R1

it has this behaviour, which can be represented in three phases: in the
phase 1 we have that C2 has an impedance very larger respect to R2, so
we have substantially an integrator; C1 is much more higher than C2 as
equivalent impedance (so as values C1 < C2), and we have that it is almost
open. In the second phase the impedance of C2 becomes smaller respect to
the R2 one, so our circuit behaves like an amplifier (this is the proportional

phase); in phase three, again, we have an integrator, with C1 as integrating
capacitance.

b

b

b

b

C2R1
b

b

b

b

C1

R1
b

b

b

b

R2
R1

b b b

1 2 3
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This is a simplified (actually, not so simple) analysis: if we calculate
the transfer function of the former circuit we can obtain similar (but less
approximated) results. Approximating, we can see that:

A = −R2

R1

The frequency of the zero is that frequency for whom (between phase 1
and phase 2) the impedance of the R2 resistance equals the impedance of the
C2 capacitance:

R2 +
1

sC2
= 0

this, because output voltage depends basically on the voltage across this
impedance; if this voltage is zero, we have a transmission zero; this occurs
for:

fz = − 1

2πR2C2

about the last pole, we have:

fp =
1

2πR2C1

We have three specifications, and four components, so we need one more
condition: the common sense! What we can do is to take one value for one
component and design all the other starting from the specifications. A good
suggestion is: start choosing the C1 value! If values are too high, the op-amp
is not able to drive it; if it is too low, parasite components become higher
than the good ones. So:

C1 ∼ 68pF ÷ 330pF

One more thing: let’s consider this schematic (equivalent to the one pre-
viously shown):

power converterPWM
modulator

b b

b

b

Z2

R1

126



We forgot to ask for a constant output voltage: until now, we just worried
about the loop gain. All our compensator and power stage can be thought
as some kind of power operational amplifier: the Z2 impedance is some kind
of internal compensation.

How can we control the DC output voltage, with this system? Well, let’s
take account of this last idea:

R1

RDC

VREF

b b

b

we know that:

V0 = VREF

(

1 +
R1

RDC

)

this RDC is a resistance which is out of the feedback loop: it does not
change in any way the behaviour of the converter, but it fixes the output
voltage at a desired value. It must be not approximated, because on it
depends the output voltage: it must be chosen with a very precise value.

Type 3 compensator

Now, let’s see how to realize in practice the type 3 compensator. We have a
circuit like this:

b b

b

b

b

C1

C2R2

R1

b

R3C3
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Now we have six elements to find, and five specification (the gain A2

depend on A1 and on the various frequencies). Considering an idea like the
previous one, we can see that there are five phases: the first two phases
are equal to the first two of the previous converter; the third phase is a
derivative phase: we have that the impedance of C3 is higher than the
impedances of R3 and R1; then, C3 in phase 4 closes itself, and we have
another gain phase (proportional phase); then, in phase 5, we have the last
integrative phase.

b

b

b

b

C2R1
b

b

b

b

b

b

b

b

R2
R1

b b b

1 2 3

b

b

b

b

C1

R1

b

R3

b

b

b

b

R1

b

R3 R2

C3

R2

4 5

By approximating and by using the same ideas, we have:

fp3 =
1

2πC1R2

fp2 =
1

2πC3R3

fz2 =
1

2πR1C3

fz1 =
1

2πC2R2

A1 = −R2

R1

A2 = − R2

R1 ⊕ R3
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Some notes about compensator design

Let’s start with an observation: the buck transfer function changes with the
input voltage, and with the load! This means that it could be difficult to
find conditions to design our converter! Without DSP or something similar,
we can not realize an adaptive design (unless some particular cases). When
transfer function changes, fc changes, so we have to check that it stays into
a well defined limit. Actually, it have to stay below a certain limit. Let’s
consider an example: if a buck converter works for example at 200 kHz,
we have that fSW = 200 kHz; this means that, if we divide by 6 (already
explained why):

fc =
200kHz

6
= 33kHz

we can accept that crossover frequency goes below this value, but we
can not accept that it goes above this value. Our design will consider this
fact!

In the worst case possible, our system must work at most at 33 kHz!
Now, which is the worst case? Well, it depends on the converter and

working mode we are considering!

• For buck converter CCM (and all the circuits deriving from buck con-
verter), we have a transfer function like this:
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we have that

Gbuck,CCM =
vIN

Vtriangle

we have two fixed conjugate poles, and a fixed ESR zero: load does not
change this graph (not the asymptotic graph: it changes the damping
factor of the conjugate poles), but the input voltage yes! We change
the multiplicative factor, so in Bode plot we are translating up and
down our graph. The worst case, the one for whom we have the highest
crossover frequency, will surely be the one with highest input voltage

value. This means that the critical condition is this:

VIN

I0

• For buck-boost DCM we have a transfer function like this one:

1
πRC

VIN

Vtriangle

√

R
2LfSW
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we have to consider the maximum input voltage (same reason of before),
and the minimum load resistance R: if we increase R of a factor of 2
(for example), the gain increases of

√
2, and the frequency of the pole

is halved; we have that the frequency of the zero is fixed (because it is
relative to the ESR), so the crossover frequency will increase: the worst
case here is relative to highest input voltage, lowest load resistance.

2.5 Measuring the loop gain

2.5.1 Introduction

We have to check that everything works: we know how to design all our stuff,
but now we also have to verify that it works. There are many elements we
don’t consider, with our formulae, for example the presence of isolators in the
loop, which make worse our loop gain. The goal of this section is to show how
to measure the loop gain. We are going to introduce some methods, working
for almost each closed-loop system. There are two kinds of methods:

• indirect measurements: we measure something which depends on the
loop gain T , and so find a relation with T and evaluate it;

• direct measurements: we measure directly the loop gain.

There are many indirect measurement techniques: time domain, fre-
quency domain, etcetera; in time domain what we can measure is the output
voltage, as a function of the input voltage:

v0(t) = f(vin(t))

In frequency domain, we can measure the transfer function of the system:

V0(s)

Vin(s)

and also the output impedance, which is Z0(s); these are examples of
indirect techniques. All these techniques are used often in amplifiers; we can
have, for example, something like this (for an amplifier):
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fc

Above the crossover frequency fc an amplifier does not work as an am-
plifier: it does what it can do; before fc, we are almost sure that it will work
as an amplifier.

Using these techniques on a power supply is not so easy: as input we have
a reference voltage, which is not an actual input! This means that we don’t
have an actual input:

AF = AI
T

1 + T
+ A0

1

1 + T

the second term is usually neglected; the first term is multiplied for this
function of T , which is called discrepancy factor: usually the discrepancy
factor is almost equal to 1 (if the loop gain is high enough).

The output impedance behaves like this:

|Z|

f

In some cases we have something like this behaviour: the frequency be-
haviour of an amplifier! If Z goes up with frequency we have an inductive
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behaviour; this is just a model, because usually we don’t have inductors (it
may happen, but this is not what we want to explain); if we remember the
Blackman’s formula, we have that:

Z0F = Z0D
1 + TSC

1 + TOC

in general, if we have an output voltage, TSC is zero, because we are
short-circuiting a voltage to ground, and we have just the denominator term;
if we increase the frequency, the effects of the feedback decrease, so TOC goes
down, and we increase Z: this is just a feedback effect, not an inductive
effect.

For power supplies a time domain approach can be a little bit better: in
time domain we can use as input a step, and get a behaviour like one of these
two:

Observing these waveforms for example in a scope, gives us some informa-
tions about the type of this system. Given the time constant of the system
τ , we have that

τ =
1

2πfc

If we have an exponential transient, we have (with very high probability)
a first order system (2); if we have some ringing (1), we have a second order
system. By measuring the final value we can evaluate the DC gain, and by
watching to the shape we can identify the system type: with a first order
system we are sure to have a very large phase margin, and with a second
order type system a worse phase margin. From an amplifier we can also have
responses like this one:
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We can have a straight line, and then ringing: this shows the slew rate
limitations of our system.

Again, problem: we still don’t have input, in a power supply, so the idea
is good, but not for a power supply: we have an input, but we can not remove
it! What we can do for some power converters is to study the variations of
the output voltage depending changes of the load; an idea is to use a system
like this one:

power
supply

b

b

by changing the current on the transistor, we can change the load, making
it lighter or heavier. For example, from an analysis like this one, we can
obtain something like this:

V0

t
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what we can know, from this system?

• we have a first order system (because we have exponential transients),
and

τ =
1

2πfc

• we go back to the exact steady state value: we have no DC error, so
this system is type 1; these system have very high DC gain: there is
an integrative behaviour, a pole in the origin2;

• the step before the exponential is not under the closed loop control:
the loop can work at low frequencies (the maximum frequency is the
crossover one, fc), so this first response is an open loop response. The
amplitude of the step is basically given by the output capacitor ESR
RS:

∆v0 ∼ ∆iRS

In a buck converter, for example, we have something like this:

the inductor introduces an inertia, because it limits the speed of the
change, so for a small time we can say that the inductor behaves as a constant
current source. This means that the extra current coming through the load,
through the switch (when it is closed), can not come from the inductor, due
to its inertia. The extra current comes from the capacitor, so we have a
voltage drop through the capacitor’s ESR, and this is what we see in the
output. If our system is type 1, we have that, after a transient, everything
goes back to the steady state. If our design is not so good, and we have a
small phase margin, we have something like this:

2Let’s remember that pole in zero means infinite gain, means to have a capacitor

connected to an infinite resistance, and in real world does not exist anything like this!
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oscillations can also continue, don’t be damped.
In some cases, typically in buck converter (which has a very low phase

margin), we can have something like this:

We can have two different behaviours, depending on the fact that we add
or subtract load: two different responses! Why? Well, because, if we are
making the load too light, we go from CCM to DCM, and we know that
DCM behaviour is a 1-pole behaviour.

2.5.2 Direct measurement

Let’s start this subsection with a question: what is the loop gain T ? Well,
any closed loop system can be modelled like this one:

R0

R1

AVx
Vx

136



we can put a controlled source, which may have a certain resistance R0,
and a load, R1: the controlled source is driven by the Vx voltage on the R1

load, so we change the input voltage by changing the output voltage. This
is a general representation of any closed loop system.

Using this representation, we can introduce a test voltage VT instead of
the controlled source, evaluate Vx, and see that:

R0

R1

AVx

b b
A B

Vx = VT
R1

R1 + R0

so, if we re-substitute VT and AVx, we obtain that:

Treal = A
R1

R1 + R0

This, for our theoretical calculations: this is the actual value of the loop
gain, but we can not measure it so easily: the A node is not available for us:
we need a way to measure the loop gain (even with some approximation).

What can we do? Well, the only available node is the B node: it can
be, for example, the output node (this may be any node of the circuit, if it
satisfies some criteria that we are going to introduce soon); what happens if
we cut at this point? Well, something like this:

R0

R1

AVx

Vt

Vy

If we are very naive, we can put a test generator VT in the output node,
study Vx and see what comes back; we can see that:

T1 = −Vy

Vx
= −(−A)

Vx

Vx
= A

this T1 is very different from Treal, unless a case: if we have that: R0 ∼ 0,
so R0 � R1, we have that T1 ∼ Treal. This method can not be used in
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electrical/electronic engineering: it works maybe in some steam engines, but
it does not work here: in electronics we always have very high loop gains, so
if we open a loop, we don’t have time to put the stimulus: the system will
saturate in a while.

We need another way: let’s consider this modified circuit:

R0

R1

AVx

b b
A R0

R1

AVx

VzB

Vy

Vx

If we assume that we cut for a very short time the circuit, put a Vx and
a Vy voltage source (which model the presence of those voltages). Now, we
can add a Vz generator, which is:

Vz = Vy − Vx

In these conditions, the circuit is not changing. Now, the circuit is at an
open loop circuit: now, with this trick, Vx is not controlling the source, so
we lose the feedback. So, now, if we remove Vx, we have that:

−Vy

Vx
= T2

This is another loop gain evaluation. In this condition, our system is
closed loop: we have no saturation. What we have to do is to insert a
voltage source Vz in series to the loop, so, given the voltages Vy and Vx, we
will have that their ratio is something close to the loop gain. Why just close?
Well, let’s see it: we have that

Vy = −AVx − VR0
= −AVx − R0

Vx

R1

=

= −Vx

(

A +
R0

R1

)

so:

T2 = −Vy

Vx
= A +

R0

R1

Now: is T2 = Treal? No: they may be close, but not equal! Treal is the
actual, theoretical loop gain; T2 is just an approximation, obtained from
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a technique which can be used in some practical cases: it is intrinsically
approximated, but it can be used without sending our system in saturation,
or something else. There are some conditions which ensure that this method
works; we can find them, simply by searching for conditions which ensure
that:

A +
R0

R1
∼ A

R1

R1 + R0

this happens if:

A � R0

R1

and

R0 � R1

both these conditions must be satisfied: we need a high A, and to intro-
duce the Vz generator in a node with strong impedance mismatch. Vz must
be small enough to not drive our system in saturation, but high enough to
be observable.

A couple of considerations: when we are in lab, we have to use an actual
voltage source, which will have an output impedance Z:

R0

R1

Vz Z
b b

C

In this circuit, obviously, the C node is not available; if we re-do the
calculations, we find that:

T2 = −Vy

Vx
= A +

R0

R1

so, it does not have any effect; the actual value of T is:

Treal,Z = A
R1

R1 + R0 + Z

our loop gain goes down, so what we measure (by using the practical

method) does not take account of Z; our loop gain is basically decreased, so
our system will be more stable.
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2.5.3 Practical use of this technique

How can we do it in real world? How can we measure, with instruments,
the loop gain? Well, let’s consider a circuit like this:

PWM
modulator

Compensator

The first question is: where can we cut? Well, basically, where there
is a strong impedance mismatch; the best point is the cut of the feedback:
we have to find a point where information is brought by voltage amplitude
(not by duty cycle, like happens in the inductance); a good point can be
the output point, with output impedance which is far smaller than the load
impedance, but this is a point with strong current: it is bad to put a strong
current on it; the best point is the feedback: analog signal, strong mismatch,
low DC current. We have that:

PWM
modulator

Compensator
b b

Vx Vy

−Vy

Vx
∼ A

and A is the loop gain: this is higher than 1! It happens that Vx ∼ 0
(is very small), and Vy goes up and down, just to counteract the effects of
Vz: to cancel what Vz is injecting. The switch mode output voltage, which
equals Vy, will be almost constant, thanks to the fact that this is a controlled
system.

This is a linear system, and we are measuring a gain of a linear system:
we don’t expect to have dependence on Vz, because, if a system is linear, its

140



gain is constant respect to the input (output to input characteristic is a line),
so all ok!

At this point, we still have two practical problems:

• how to inject the Vz signal;

• how to measure T , in magnitude and phase.

First of all: which waveform have we to use for Vz? Basically, sinusoidal
waveforms: we want to measure a transfer function, so use a monochromatic
signal is the best choice. There are four ways to inject signals, and we are
going to explain them all.

1. We have a signal, which derives from a waveform generator; usually,
those generator have an output which is grounded: we have to face
this problem. The idea we can have is to use a transformer, putting
in one node Vz, obtaining, in the other side, Vy and Vx:

b b

b

b

Vy

Vx

Vz

This transformer has to be a wide-band transformer: we want to find
the phase margin, the crossover frequency, and it can be go up to 10
kHz or something similar. This is not a standard 50 Hz transformer!
One available transformer in lab can be the passive current probe. The
probe is basically composed by a clamp which has, inside it, a ferromag-
netic material with a certain number of coils we put around it, in order
to measure the current (some kind of half-transformer). Transformers
are reciprocal, so if we want to use a current probe as an injector, we
have to take the probe, remove the BNC box, and go directly to the
signal generator, by connecting a wire to the other side of the ferro-
magnetic material, creating a kind of transformer.

This system has a drawback: we have a high number of coils, so if we
put in the transformer 1 V, out of it we have something similar to 2
mV: this transformer injects a very low voltage into our system. Can
we change the ratio? Well, we may turn the wire, connected to the
other side of the material, more times than 1 (3 o 4 times), in order to
increase the ratio.
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2. Another way to do it is injecting Vz using an adder:

Vx

Vz

Vy

Feedback

We just add a node which permits to add the Vz signal to the feedback
loop, in the point where we want to cut. How to implement an adder?
Well, we can use this simple op-amp circuit:

b

b

b
Vx

Vz

Vy

We don’t have to care about the − input: even if it is an inverting
adder, we are just considering a sinusoidal signal, so we are inverting
the signal we add, and this is not important! This system can go down
to 0 frequency, but it costs an op-amp: we have to put it just on the
prototype of our system, not in production.

3. Design a transformer using op-amps (crazy thing!).

4. Use an isolated signal generator, which is large, very expensive, so we
are not considering it.

So, once we injected this voltage, we have to measure, in some ways, the
ratio between Vy and Vx; here, there are the main methods we can use.

1. By using a scope: we can use two probes, and measure the phase
difference and the ratio of the amplitudes; this is easy, cheap, and we
can use the instruments available in lab. Another note: if we are looking
for the crossover frequency, we just have to change the frequency of
the signal Vz, until the ratio of the two amplitudes become 1. At
this condition, the phase shift between the two signal equals the phase
margin ϕ:
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ϕ = ∠T − 180◦

so, remembering that:

∠T = ∠

(

−Vy

Vx

)

we have that the phase of T already has a phase shift of −180◦; so:

∠

(

Vy

Vx

)

− 180◦ − 180◦ = ∠

(

Vy

Vx

)

2. By using a low frequency network analyzer; this is just an instrument
with three connectors (it is quite different from the more common RF
network analyzer), 1 output, 2 inputs A and B. This instrument can
directly give us

∣

∣

∣

∣

VA

VB

∣

∣

∣

∣

and ∠

(

VA

VB

)

This is very very easy to use, but quite expensive; for Power Electronics
there are cheaper network analyzers.

3. By using a vector voltmeter (which is simply half of the previous in-
strument).

4. By using a scalar voltmeter (which can just measure amplitude, but
not phase). With it we can measure Vx, Vy, Vz; a note: if we remember
that

Vx Vz

Vy

we can use the Carnot theorem (cosine theorem) and find the angle
between Vx and Vy, remembering that

Vy + Vz = Vx
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2.6 Alternative control modes

2.6.1 Introduction - feedforward

From the theory we studied, we know that we can measure the loop gain
with something like this:

PWM
modulator

Compensator

Vz

Power stage b

We know that:

−Vy

Vx
= T

but, with this configuration, we can also do other measurements! For
example, let’s consider the ratio of Vy and Vx: this is what we have out of
the compensator, on what we have in the compensator: the compensator

gain.
Why are we talking about this? Well, we want to emphasize one fact:

the method we used to control our converter is voltage mode: we measured
the output voltage, and changed d. There are also other methods, borrowed
from control theory: we know that output voltage changes, because also
input voltage has some variations: what we can do is to measure also the
actual VIN, and give it directly to the PWM modulator: we sneak the input
voltage, send it directly to the PWM modulator, without using the feedback:
in this case, our control becomes faster, because we don’t pass through the
compensator. This technique is called feedforward:

PWM
modulator

Compensator

Power stage b

feedforward
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Let’s use an example, in order to understand it better: in a buck converter,
we have that:

V0 = VIND

So, with the feedforward, if VIN increases for some reasons, the control
has to decrease immediately the duty cycle:

D ∝
1

VIN

We have seen that the duty cycle can be generated as:

t

Now, the duty cycle must not be generated from the error signal; we know
that:

D =
Verror

Vtriangle

If VIN increases, what I have to do in order to decrease D is to increase
Vtriangle; an easy way to do it is to make the slope of the triangle be propor-
tional to VIN:

t
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we change the slope, but keep constant the period.
Let’s remark that feedforward must be added to the feedback: we have

to measure the output voltage, all the times!

2.6.2 Current mode

There are also other solutions, for the control problem. As we know, inside
the power stage, we can have something like this:

PWM
modulator

Compensator

Power stage b

What we can do is measure also the state variables of the system: if we
measure all the state variables, so, the already known v0 and iL, we can
increase the performances of the control. If we measure iL we obtain the
so-called current mode; it is defined with these four steps:

1. as it begins a new cycle, we turn the switch on;

2. we wait until iL reaches the desired value;

3. we turn the switch off (we open the switch);

4. the inductor current, when the switch is off, starts to decrease, and we
wait the beginning of the next cycle.

Let’s study for example a buck converter:

S

R
Q

b

CLK
t

CLK
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We measure the inductor current, and obtain a voltage proportional to
iL, with a resistance factor RS (just a conversion factor from iL to vL. We
introduce a S-R flip-flop, and its output goes to control the switch. To the
set input we introduce a clock, which is composed by a sequence of pulses;
we connect it to the set, just because each pulse corresponds to the begin
of a new cycle. Then, we have to wait that iL reaches the desired value, vL

with it, and we have to compare this vL voltage with a comparator; the other
input of the comparator is Vcontrol, which is the voltage which is compared
with the vL voltage: it is the output of an error amplifier, which compares the
output voltage of the power supply to a reference voltage. Vcontrol establishes
the maximum value of the inductor current we admit: it chooses the desired

value.
This system has two loops: a current loop, and a voltage loop.

• The current loop has no poles, no filters of any type, so it is a fast loop.
As soon as iL reaches the control value, the desired value, in the next
cycle we have that the voltage comparator resets the flip flop, so all
reacts promptly. This is a non-linear loop, because we have non-linear
elements, like the flip-flop.

• The voltage loop senses the output voltage and changes the compared
voltage. It is an analog loop: it has an error amplifier (which is an
analog amplifier), and it is slow, because the error amplifier is based
on a compensator, which has poles.

Let’s do some calculations, in order to design this compensator. We know
that:

t

iL

We have to compare iL, represented as a voltage; if we are using a buck
converter, we have that:

iL = I0

More in general, we have that, if our loop is fast enough:
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iL ∼ iL,peak , ipeak

This, because, if everything happens in a small time, we have small cur-
rent changes! For this case:

iL = I0 ∼ ipeak =
Vcontrol

RS

where ipeak is the controlled value. We obtain that the inductance behaves
as a controlled current source, and its value is Vcontrol

RS
.

Let’s find the transfer function:

V0

Vcontrol

Well, calling Z the impedance seen by the current generator, we have
that:

V0 = ZiL = Z
Vcontrol

RS

where

Z = R ⊕ 1

sC
so

V0

Vcontrol
=

R

RS

1

1 + sRC

we have a DC gain, and a pole; if we want to be precise, there is also the
usual ESR zero:

V0

Vcontrol

=
R

RS

1 + sCRESR

1 + s(R + RESR)C

So, we have that the DC gain and the pole are moving, variable, and the
zero is fixed:
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1
2πRC

So, let’s see which are the advantages of this technique.

• We have no VIN over there: this means that the audio susceptibility,
the dependence of the system on the input voltage is almost null! This
means that we don’t need to introduce feedforward, because it is al-
ready implemented!

• We are missing one pole, because we are forcing the inductor to act as
a current source: we have just a 1-pole dynamics, and we may use just
a type-2 compensator, which is faster than the type-3 compensator.

• If load changes, if the load R decreases, the pole shifts to right, but
gain decreases of the same factor: frequency and gain move together,
and with the same factor. What happens is that the high frequency
behaviour does not change with R, with the load resistance, because
the crossover frequency does not change: the low frequency behaviour
depends on R, but the high frequency behaviour no!

• If we keep increasing R, accidentally our system may move to DCM,
and this model is no longer valid; there is an advantage respect to
voltage mode: in DCM we have 1 pole (with different frequency) and
1 zero, so our compensator will not be totally wrong: the circuit is the
same, with different values!

• If we have that load becomes a short circuit, the error amplifier wants to
increase the voltage, and reaches the maximum; output will be limited
in voltage! We can limit the control voltage with a zener diode, and
prevent that ask of current for the loop: even if we have a short circuit,
the output current can be limited, and the converter still survives.
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With a voltage mode controller, if the load becomes a short circuit,
the converter asks for the maximum voltage, we have D = 100%, and
current continues to increasing, destroying the circuit.

A check: if we increase the input voltage, it happens that

VIN − V0

L

increases! So, the ramp gets steeper, immediately! But this will adapt
immediately our duty cycle, making close to zero the audio susceptibility:
the slope changes immediately, without need to pass through poles or filters!

t

iL

Another observation: if we decrease the control voltage, what do we have?
Well, something like this:

t

iL

It happens that the inductor current come down just in one cycle, the
average current come down, and this in a very short time: we just have to
wait the begin of the new cycle.

Current mode has also bad news, disadvantages.

• Money: we need some extra devices, so we have to spend more money!
We have to measure iL (with a resistor, or something else); the expen-
sive element is the current measure, not the other elements!
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• If we have some noise on the current iL, immediately the comparator
may sense it, and open the switch; the next cycle, we will recover the
situation, but we have a very high noise sensitivity.

• If we increase VIN, we have that iL, actually, changes; this means that we
lose the approximation iL ∼ ipeak, and we have to re-do the calculations!
The fact that we lose this approximation, is the reason of the non-zero
audio-susceptibility: average current errors!

• The most important error is related to the fact that if, during steady
state condition, a noise signal stops our cycle, we have something like
this:

t

iL

∆Ii

∆If

next cycle we try to recover; when it starts, we see that, at the end
of the cycle, we may have a change of the current. Depending on the
amplitude of this final ∆ current, we may introduce an instability: if
every time we have that this difference of current increases, we basically
introduce instability! This type of instability is called subharmonic

instability, because its frequency is one half of the switching frequency.
This behaviour, so the fact that we generate harmonics under the fun-
damental, is a characteristic of some dynamic systems. After the first
period doubling, period continues to doubling, so the frequency of the
sub-harmonics continue to decrease, and the system tends to become
chaotic.

We want to avoid this situation, so we want to try to find a condition
for whom this period goes to 0. Let’s analyze 1 cycle (in the previous
plot), and see what happens; we want that, for each cycle:

∣

∣

∣

∣

∆If

∆Ii

∣

∣

∣

∣

< 1
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Let’s consider the two slopes of the two curves:

m1 =
VIN − V0

L

m2 = −V0

L

geometrically, we can write that:

∆t =
∆Ii

m1

∆If = ∆tm2

so, by combining the two, we obtain:

∆If =
m2

m1
∆Ii

so

∆If

∆Ii
=

m2

m1

this is the condition which permits to damp out error; this can be
written simply as:

D < 0.5

So, if we want to avoid subharmonic instability, we have to work all
the times with D < 0, 5.

We want to use converters also with D > 0.5, but it could be a problem;
let’s consider the three possible scenarios:

t

152



With the curve 1, all is ok; in the case 2, we have that ON time ends too
early, so we have to delay the TSW of a little time; about the case 3, we have
to anticipate the TOFF time.

If we are able to solve all these situations, we can remove this error in
just 1 cycle. How to do it? Well, let’s study this graph:

t

b

b

b

But there is a problem: here, it seems that we know, at the beginning of
the cycle, that there is some delay; this is absurd: when we start the cycle,
we can’t know if we will have errors; what we need, so, is a solution which
is valid for any initial value, any initial condition. What we can see from
the previous plot is that all the stop points are aligned on the same straight
line: basing on this observation, we have to introduce a dynamic correction
of the error, by changing dynamically the threshold; this means that we need
a variable Vcontrol, and in order to do it we have to add a compensation

ramp (or compensation slope). Let’s see this schematic:

rC

Vcontrol

Instead of having a constant voltage out of the error amplifier, so before
the comparator, we ask for a variable control voltage, obtaining something
like this:

t
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A descending voltage. The voltage comparator just compares this new
voltage, given by the constant Vcontrol plus the control ramp rC with the vL

one:

iLRS<? >Vcontrol + rC

we can write that:

iLRS − rC<? >Vcontrol

so, the −rC will have this behaviour:

t

This means that this compensation ramp has this behaviour, this wave-
form, once we change its sign.

Let’s remember that the compensator, the error amplifier, is basically an
integrator: out of the integrator we can have any voltage we want, without
changing its input: just for the initial conditions. Instead of this compensa-
tion ramp, if we put this one, the shifted one, we obtain an offset: a negative
offset. This offset is included by the error amplifier: as said, the integra-
tor can have at its output any DC voltage which is convenient for the loop.
When we have in the circuit this offset voltage, we can refer it to the input
of the compensator, simply by dividing it for the DC gain of the integrator,
but it is almost infinite!

rC

Circuit
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We can take the voltage, change the sign. Then, instead of adding my
reversed compensation ramp, I add the compensation ramp, with its sign, in
the other side of the compensator: simply, we have to add a DC voltage, in
order to obtain a ramp out of it. Use this method is easier, because those
ramps are easier to generate.

Which is the slope of this ramp, in order to remove, in one cycle, any
possible error? Well, it is the maximum slope we can have: we have to add
this voltage ramp on the other, and this means to delay or anticipate the
time; if we want to have the maximum swing, this voltage must be

−V0

L

This because all these points are aligned on this slope! The ramp slope
we have to add, so, is just this! Actually, we forgot something: we have still
to have a resistor term (RS), in order to obtain a voltage slope (over time):

−V0

L
RS

Now: what happens if our compensation ramp is not the right one? No
problem: instead of removing in one cycle our error, we reduce it; this means
that we introduce the condition which removes the sub-harmonic instability,
so in some cycles it will go ok!

This is not the only compensation ramp we can use: we can use a com-
pensation ramp to solve another problem: up to now we are controlling peak

current (our current mode is based just on the control of the peak current);
if we increase the voltage VIN, the ramp goes up steeper, but goes down with
the same slope (because V0, which determines the value of the descending
slope, is always the same).

t

We used, as hypothesis, the fact that the peak value equals the average
value; this is not true at all, and the difference between iL and ipeak changes
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with the bias point (because, actually, audio susceptibility is not zero); this
goes to destroy the approximation of the fact that we have just one pole.
If we really want to use this approximation, we have to introduce another
slope. We know that:

iL = ipeak −
1

2

V0

L

1 − D

fSW

(we have found this equation simply by taking the peak current, and using
the ramp down expression; then, we averaged with the Nutella theorem).

This is the actual value of iL: ipeak is what we can control, and the other
part is the error, which depends on the duty cycle D; this is a problem: we
don’t know the exact initial conditions, so input and output voltage, and
so D! We don’t know the initial conditions, so the initial D, and this is a
problem: we can not correct a priori. What we know is that, if D ∼ 1, our
correction to the term must be very small; if D ∼ 0, it will be something like

+
1

2

V0

L

1

fSW

So, we have to be ready for every value of D! We have to find something
like before:

t

This correction depends linearly on the duty cycle; if we add on the top
of the control voltage this term, which changes in time, we do something
similar than before: we add another compensation ramp; with this idea, we
obtain that

iL = ipeak

The maximum correction we need is:

+
1

2

V0

LfSW

1

TSW
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The T−1
SW term, because we have to introduce this slope for a time equal

to TSW: this correction must go from 0 to TSW, and we obtain:

+
1

2

V0

L

This is the slope correction we need in order to remove our problem: with
this, we remove the average error, so we move to (ideally) infinite frequency
the second pole. There is one term missing:

+
1

2

V0

L
RS

this RS term permits us to handle voltages instead of currents.
Any compensation ramp with slope from this value to V0

L
to this one is

good!

2.6.3 How to measure current

Let’s consider the usual buck converter:

b b b b b b

b
b

b

b

b
b

2

12

11

10 8 7

654

9

31

we know that, in CCM:

V0 = DVIN

The duty cycle D is the same in both current or voltage modes: no
matters how we control the system! What changes, is how to measure it, but
its actual value remains the same.

We are talking about current mode, so our purpose is to measure the
inductor current. Which are the valid points to measure this current? Well,
let’s analyze them.

Node 1 is not good, because we don’t have peak current here: just DC
current; node 2 is ok, because, during TON, we have ipeak; same thing for 3,
4, 5. Nodes 6, 7, 10 and 12 are not ok, because there are missing the DC or
the ripple values. What about the remaining nodes? Well, about node 9, it
seems to be ok, but we have a problem: it conducts just during TOFF, so we
can’t use it, because, when we close the switch, there is no current there: if we
stay in point 9, we never see current, even if there is some through it. 8 and
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11 are valid, but it is better to avoid them: this is not an isolated converter,
so we expect that the GND (or chassis) is the same for load and input. If we
connect those points, we short-circuit this current path, so current goes one
part to one section, and one part to the other. This has another problem:
the two GND points move, so current mode voltage across the load goes up
and down, because we have the current sensors have a constant differential
voltage, but a variable common mode voltage, and this makes our sensor be
a transmitter.

So, 8 and 11 are not ok for EMC problems and because current measure-
ments are not very good in those points.

So, what about the four good points? Well, let’s classify them:

• about node 2, we have just part of iL, and constant voltage (equal
to VIN);

• about node 3, we have just part of iL, and variable voltage (changing
from 0 to VIN at high frequency);

• about node 4, we have full iL, and variable voltage;

• about node 5, we have full iL, and constant voltage.

Now, before discuss which points are better than the others, let’s intro-
duce the two modes we can use to measure ipeak:

• with resistors;

• with current transformers.

Measurements with resistors

We are going to introduce how to measure current with resistors, and to
discuss which points are the best. We know that a resistance can be modelled
by using the Ohm’s law:

t

|Z|

R
LESL
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RS =
VRS,max

ipeak,max

VRS,max is a practical constant: it is defined by the manufacturer of the
integrated controller, and it is about 1 V (or 1.1 V). ipeak is defined by the
problem.

Usually, the value of RS is out of the various standards (E12, E24...), so
we have to choose higher or lower values. What do we use? Well, we must

guarantee that we reach the maximum voltage value at the right point, not
before the peak, so we have to use lower resistances, because we need to see
the ipeak value.

How can we measure the dissipated power (the other important parameter
of a resistance)? Well, we know that:

Pdiss = I2
RMSRS

we are talking about dissipated power, so we need the RMS value; the
resistance value is the actual one, not the nominal. So:

Pdiss = I2
RMSRS,actual

So, which points must we use? Well, by a point of view, we prefer points
2 and 3, because they have less current, so they can decrease the dissipated
power. If we have to choose between 2 and 3 for one set, and 4 and 5 for
the other, which ones do we choose? Well, we have a floating resistor, so we
prefer to choose, between 2 and 3, the section 2: it has a DC common mode
voltage. Section 3 has a high frequency common mode voltage, so we have
a square wave, with many frequencies, and it requires a higher CMRR to
remove this problem. Same story for 4 and 5: we prefer, for the same reason,
the section 5, because of its DC common mode voltage.

So, now we know that the two best sections are 2 and 5, and we have
a good reason to use 2; 5 introduces more dissipated power, but it has less
common mode DC, so, depending on what we need, also 5 can be used: each
point has pro and con! If we have common mode limitations (due to our
amplifiers), we have to use the section 5; if we have no CMRR limitations,
we can use the 2, which guarantees higher η.

Resistors have another problem: they are not resistances, so they have
parasitic elements disturbing their resistive behaviour. In particular, the
model of a resistor may be this:
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Very important in our model is the ESL (Equivalent Series Inductance),
which introduces a zero at:

fz =
R

2πLESL

we are working with small resistance values, so fz may be at very low
frequencies!

If we are working in section 2, with high di

dt
, so we have something like

this:

t

This is the effect of the ESL: this derivative of i goes into the inductance,
and gives an extra voltage.

Current mode worked on the principle of: close the switch, and wait
until we reach the peak current; this is bad, because our sense value can be
influenced by the ESL, and by the high voltage produced by it, due to the
high voltage derivative.

We have to cancel the impedance, by introducing a pole at the top of the
zero; in order to do it, we just have to place an RC circuit like this:

b

b

Where we have to set:
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LESL

RS
∼ RC

if we realize something like this, we obtain a wide-band current sensing
system.

We don’t do this very often, because it is done only in systems with very
high current.

In modern ICs we can get rid of those extra spikes, with another trick:
controllers know when the cycle has to begin, so we can add a blanking
circuit which don’t senses what happens at the begin of the cycle, ignoring
the spike; using a blanking time of 50 ns or something similar, we can ignore
this problem!

Some remarks about transformers

Another way to sense the current is based on current transformers. Let’s
introduce some remarks about transformers:

b b

V1 V2

I1 I2

where

{

V2 = nV1

I1 = nI2

if we multiply the two terms, we obtain that:

I2V2 = I1V1

This means that we have no losses, and no frequency limitations (with
this ideal model). An actual transformer has frequency limitations: its
model is something like this:

b b

Lm

Lm is called magnetizing inductance: we would like that Lm → ∞, in
order to avoid those frequency limitations.

In a transformer, we have that the flux ϕ equals:
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ϕ =

∫ t

0

v(t)dt

when we put an input current, one part goes to the magnetizing induc-
tance, and it generates flux (which risks to saturate the transformer), and
the other part in the transformer, so in the other branch. There are two
negative situations:

• if we put a small load, so a load which requires a high current (a heavy
load), we risk to overload the transformer, damaging it, but avoiding
saturation: Joule effect damages the transformer!

• if we have a current in the Lm which is too high, the transformer sat-
urates, so stops to behave as a transformer!

the current on the magnetized inductance im is:

im =
1

Lm

∫ t

0

v(t)dt

we want to keep im under the saturation limit. How can we avoid satu-
ration in a magnetic component? Well, this integral has to be finite, so we
have to avoid DC values: Vwinding,DC = 0.

Transformer as a current transformer

Given our simple model, if we put a current source on it, we have something
like:

b b

the load must be inserted, in order to give a path to this current. We
want, ideally, that:

i2 =
iIN
n

this is not true: part of the input current will go through the magnetized
inductance, so will not be transformed. We don’t want large errors respect
to the previous expression, so an idea is to have a very large inductance. We
can say that:
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im =
1

Lm

∫ t

0

vprimarydt

in order to keep im small, we need a small voltage on the primary winding.
We want to use this transformer as a current transformer, so we know

input current; we can say that:

vprimary =
vsecondary

n

So, the voltage on the secondary winding must be low, and this means
that we need small load resistance, ideally zero.

All this stuff is true, in general, for current transformers; in our circuits,
with the control loop and the power stage, we have some extra constraints:
even if we measure the circuit, we need on R the right output voltage for the
controller (so, typically, Vsecondary,max = 1 V. If the controller reaches 1 V, so
the maximum voltage accepted in one cycle, the controller stops the cycle.

We have to find n and R, in order to design the circuit. Let’s consider
once more our buck converter:

b
b

As we know, there are two good sections for current measuring. With
current transformers, can we use the section 5 ? Well, it is not good: if we
have a DC component, the current through R will generate a voltage with a
DC component; the voltage across R′

S so is:

vR′

S
= isecondaryR

′

S

in the current on the secondary winding there is also the DC component,
which will flow to the resistor, generate a DC voltage drop, which will go
back, so the primary current starts to ramp up and the transformer saturates:
section 5 is not ok.

What about section number 2? Well:
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b
b

bc

If we put the transformer in series to the switch, does it work? Well,
the ipeak current is something like what shown in previous graph. iSW has a
DC component, so it will saturates. In other words, the pulse goes to the
secondary side, and we have a current, on the secondary winding, which is
similar (unless the n factor) to the primary one; if we multiply for the load
resistance, it has non-zero DC component, so it will charge more and more
the inductance at each cycle, and drive into saturation the transformer.

Let’s consider a brief numerical example: if we have

Ipeak = 3 A

considering n = 10 (so an 1 : 10 transformer), in the secondary winding
we have something like:

Ipeak

n
=

3 A

10
= 0.3 A

In order to satisfy the condition for the maximum voltage of the micro-
controller, we have to put a resistance which gives something similar to 1
volt with the maximum current on the secondary winding; this means, using
the standard values:

R′

S =
1 V

0.3 A
∼ 2.7 Ω

respect to the resistive solution, which considers a higher current, we have
a resistance which is 10 times higher: if we put just a resistance, it will have
3 A on it, so it will be greater of 10 times; what about Pdiss ? Well:

P ′

diss = I ′2
RMSR

′

S

but now we have to evaluate the dissipated power on the secondary

winding, so we have to use, as current, the RMS current on the secondary
winding. We have that, given I ′

RMS the current on the secondary winding on
the transformer (so, in a circuit which measures current with a transformer),
and IRMS the current on the measuring resistance (in a circuit which uses
resistors to measure current):

164



I ′

RMS =
1

10
IRMS

so, respect to the Pdiss in a circuit in which we measure the current simply
with a resistor:

P ′

diss = R′

SI
′2
RMS = 10 × RS ×

1

100
I2
RMS =

=
1

10
Pdiss

So, if we measure current from the same section (2) of the same circuit
with a transformer instead that with a resistor, we decrease the power dissi-
pation of ten times. This means that:

• we increase the efficiency η of our converter;

• we have smaller components: the value of the resistance is greater
respect to the other case, but the dissipated power is smaller, so, gen-
erally, components will be smaller; this, means less ESL, so wider band!

We still have a problem: this circuit does not work! In fact, we have
something like this:

b
b

bc

TON

TOFF

On the load resistor we have something similar to 1 volt voltage drop,
during TON: across the magnetizing inductance, so, we will have something
like 0.1 V, and will have some magnetizing current through it. After TON, we
have a time TOFF, when the switch is open: it happens that the current of the
magnetizing inductance can not flow through the switch, because it is open,
so it will go into the transformer, circulate on the secondary winding, and
generate a voltage drop on the load resistance, with opposite sign (because
current in the magnetizing inductance go from left to right, due to the usual
conventions; in order to keep the im be continue, it must go with its former
direction, so it will generate, in the secondary winding of the transformer, a
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voltage drop opposite respect to the TON one). The voltage across the R′

S

resistance will be something similar to:

vS =
im
n

R′

S

Our goal was the one to reduce errors, so to reduce im, so it is quite low,
and the voltage drop across the R′

S resistance, of opposite sign, is quite low:
a few percent of the TON one: instead of the 3 A of our example, something
similar to 0.03 A, and so, instead of 1 V voltage drop, a few percent of it:
something similar to 0.01 V (just to put some numbers)! This voltage dis-
charges the inductance, but it is too small, so the discharge time is something
like 100 times the charge time (the reciprocal of the few percent). This means
that the magnetizing inductor can only be charged, not discharged, and it
will go eventually in saturation.

How may we discharge this magnetizing inductor, with some circuital
modifications? Well, we need something which allows current to flow in the
right direction, not in the opposite one! This is, simply, a diode:

b
b

bc

We have that, during TON, the diode behaves as a short circuit, and we
have something like:

TON :
i

n
R′

S

Diode actually has a voltage drop, but what does it mean? We are driving
this circuit with current, so voltage does not interest us so much!

What about TOFF ? Well, the diode doesn’t allows current to go the wrong
side, but this current is the current of an inductance: a state variable! This
means that this inductance gets mad and its voltage increases, as much as
possible to find a path for the current. When voltage increases, it charges all
parasitic capacitances, so risks to damage the diode, but the energy storage
in the magnetizing inductance is so tiny that this risk does not exist.
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Buck-boost current mode

Up to now we talked almost ever about buck converter; let’s introduce some-
thing about the other important converter we have: the buck-boost. We
know that:

bc

t

Still the same story: in buck-boost, we have that current increases,
reaches a peak, and so on. In voltage mode we controlled the TON time;
in current mode we want to control the system by setting the ipeak, instead
of using a PWM modulator.

We used, for the first buck-boost analysis, the energy transfer method:

V 2
0

R
=

1

2
fSWLI2

peak

(we have talked about this expression before)
If we invert this expression, we have:

V0

Ipeak
=

√

RLfSW

2

But we don’t work directly with current: we want to work with voltages!
So:

Ipeak =
Vcontrol

RS

so:

V0

Vcontrol

RS =

√

RLfSW

2
so:
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V0

Vcontrol
=

1

RS

√

RLfSW

2

An observation: in this expression, we are missing the input voltage, VIN!
This means that audio susceptibility is ideally 0! This is good, but we still
have a problem: in both gain and pole frequency we still have dependence
on R, so we have the same situation of buck-boost voltage mode.
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Chapter 3

Isolated converters

Now we are going to introduce the isolated, or derived, converters. The
name derived comes from the idea we use: we take a buck, boost (few
times) or buck-boost converter, and add a transformer, then see what we can
find. We have some advantages and some disadvantages.

Let’s start with the advantages.

• We obtain isolation: if we touch our PC, for example, we don’t get
shocked, thanks to the isolation introduced by the transformer. This
is not enough: we have to isolate both power stage and control parts.

• We can have multiple output (using more windings of the transformer).

• We have no output voltage limitations, in two senses:

– we can invert the polarity (so obtain a buck-derived converter with
negative output), because what we obtain, respect to the ground
of the input stage, is just a floating source;

– we can have (for example) a buck converter with higher output
voltage respect to input voltage: no magnitude limitations.

• We have one more extra degree of freedom: the turn ratio ( NS/NP

): this means that (we will understand this statement later) we can
choose a convenient duty cycle D (not too short, in order to reduce
pulses and so losses);

• We can move stresses in the most convenient place of the circuit, or
distribute them (also this statement will be explained better later).

Now, let’s show the disadvantages.
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• There is a transformer: the circuit is bigger, more expensive.

• The circuit is more complicated to build and to design.

• We may have some issues about cross regulation: cross regulation
means to keep all the outputs at the right voltage: if we change the load
of one output, we want that all the output stay to the right voltage. If
we change load, it may happen that some output voltages of converter
V0 become unstable or change.

Buck converter has a lot of sons ; the most used are:

• forward converter;

• 2-transistors forward converter;

• push-pull converter;

• half-bridge converter;

• full-bridge converter.

These converters may be useful for high power conversion: they are sons
of a buck, so they can be controlled in CCM, and are less stressed.

Boost converter has just one famous derived: the current fed converter,
which is used few times. About buck-boost, there are two well-known con-
verters: the flyback converter, and the 2-transistors flyback converter.

Flyback is basically the only descendent of the buck-boost, and it is the
most used converter in the world: it is quite easy to design, inexpensive, even
if it is a son of a boost: if we want to control it (and we want to), we have
to use it in DCM, so we are limited to low-power uses.

3.1 Flyback converter

Let’s start from the father of our converter: the buck-boost converter

bc

How it works? Well:
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• first, we close the switch, and store energy into the inductor;

• then, we open the switch and deliver the stored energy to the output.

Which energy are we storing? Well, at the input we have electric energy
(associated to voltages and currents), and we convert it into magnetic energy
(magnetic flux) with a transducer: the inductor. Then, we turn it back into
electric energy, and deliver in this form to the output. What we can do is
something like this:

bc
b b

We can use two windings instead of a single inductor, remembering that
buck-boost is an indirect converter: the primary winding will be used just
for charging our converter, the secondary just for discharging it.

A remark: this is not a transformer: those are two coupled inductors;
the equivalent schematic is something like this:

b b

There is a fundamental difference between a transformer and two coupled
inductors: in a transformer we wanted a very high magnetizing inductance,
no matter its value; now, we want a finite and controlled Lp value (where
Lp is again the magnetizing inductance, and “p” means primary, because
we usually put it into the primary winding, even if it is not mandatory).
Magnetizing inductance, in fact, is a model which represents the fact that
this device can store energy!

Now, our goal is to store energy, so we need a particular inductance.
Let’s analyze this converter:

• when we close the switch, VP is positive; if we have a positive voltage
on a dot, we know that all positive voltages will be on all the dots of
the transformer; at this state, diode is in cut-off;

• if we open the switch, diode is conducting, so voltages are reversed.
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bc
b b

bc
b b

Now, just for cosmetics, we can change this schematic into this:

b

Now, we have something slightly different respect to what we had: we
don’t have the diode connected to the inductance, so we can say that switch
and primary winding are in series, and this means that we can swap them,
obtaining something like this:

b

b

RS

Now we have that the transistor is referred to the floor, so it is a low-side

transistor: this is much more easier to drive!
If we want to use current-mode control, we must sense the inductor cur-

rent; we want to sense it during TON, so we have to use the primary winding;
we can use a resistor referred to ground! This is good, because the voltage
we have over here, iLRS, is referred to ground, so we don’t have to sense high
voltages.
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This converter is inexpensive: we have one magnetic core (with some
windings), it is isolated, and we can use low-side switches: for these reasons,
this is the best topology for low power levels.

If we need two output voltages, we still have our coupled inductors, but
we can just add another secondary winding:

b

b

b

Just a remark: if we use current mode, we may have the sense resistor,
so we have the switch not referred to ground; the good thing is that the
maximum voltage across the RS resistor is of 1 volt, so it doesn’t matter.

3.1.1 Flyback analysis

We are going to analyze our converter, in a similar way to the buck-boost
one, considering the extra degree of freedom we have. We consider the two-
outputs topology, in order to show a general case.

b

b

b

Our goal is to determine stresses, turn ratios, value of the magnetizing
inductance. We can use current mode, and so put or not RS: in buck-boost
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derived we don’t have many advantages like in buck, but we have circuit
protection against short circuits, and small audio susceptibility.

As hypothesis, we will consider cyclostationary condition, small output
ripple, high time constant, but also losses: now we are going to consider the
voltage drops across diode and switch.

Turn ratio

Let’s start from the turn ratio: the two secondary windings are taking energy
from the magnetic core; the important point is to remember that:

∂φ

∂t
=

∂ [b · s]
∂t

Each one of the windings senses the same variation of the magnetic in-
ductance vector b; from Physics we know that:

∂φ

∂t
= −V

where V is a voltage; how much are the voltages on the windings? Well,
this depends on the number of turns we have:

NS1

NS2
=

VS1

VS2
=

V01 + VD2

V02 + VD2

The voltage on one of the secondary windings equals the sum of the
output voltage and the voltage drop on the diode.

In order to avoid saturation status, we need that:

V winding = 0

If we are not in control mode, the saturated inductor becomes a piece of
wire, so we have unlimited current (because we don’t have the short-circuit
control protection), and we destroy the MOS transistor. We know that, given
the energy of the primary inductance (stored into magnetic flux):

P0 = ELp
fSW

Those are the basic equations we need to design the coupled inductors.
There is another condition, given by common sense: the stress moving: the
turn ratio is an extra parameter, and it permits to change D, the duty cycle;
this permits to move (as already said) the stresses in the various parts of the
circuit. Be careful: this does not mean that we can reduce stresses, we
can just move them, but this means that we can have relaxed components!
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A common sense choice for moving stresses may be this one: given D the
duty cycle of the charging phase, and D2 the duty cycle of the discharging
phase (because we are not in CCM, so there is also an idle time),

D + D2 < 1

we have to stay in DCM, so the sum of the two duty cycles must be less
than one.

If there are no other constraints, a reasonable choice may be to choose:

Dmax = D2,max

Same times to charge and discharge the circuit. How much less than 1?
Well, we have to stay close to 1 (in order to use the converter for a good
time), but not too close (due to tolerances): 0.3 is too low (we are using the
converter just for 30% of the time), but 0.99 is too much; good choice are
0.9, 0.85, 0.8.

Output power

How much is the output power? Well, we have two output voltages, so two
powers (let’s remark that these flyback converters work well with 2 or 3
secondary windings, but with 4 the cross regulation becomes very worse); we
have that:

P0 =
∑

i

V0iI0i,max ∼ (20 ÷ 70) W

this gives us an idea of which is the output power: the total power deliv-
ered to the output.

Let’s go back: the total power to the secondary windings will be some-
thing similar:

Psecondary =
∑

i

(V0i + VDi) I0i,max

given the output current, we just have to multiply it for the sum of output
voltage and voltage drop on the diode.

Going back, we want to find the power into the primary winding: it is
just the power which enters in the primary winding! In order to evaluate it,
there is a magic factor which considers dissipations and all that stuff:

Pprimary =
Psecondary

ηmagnetic
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where ηmagnetic is the magnetic efficiency; we have that:

ηmagnetic = 0.85 ÷ 0.9

Now, from primary power, we can evaluate primary energy:

Eprimary =
Pprimary

fSW

fSW is another degree of freedom: we can choose it! But... We have
to stay into low frequency ranges: 100 ÷ 200 kHz! Isolated topologies have
transformers, so they must work with lower frequencies.

Given the energy on the primary winding, we can use, with Lp inductance,
the standard equation:

Eprimary =
1

2
LpI

2
peak

t

iLp

Ipeak

when we open the switch, the current on the primary inductance goes to
zero; we obtain that the D we use is, in order to stay in DCM:

DmaxTSW

the slope of this curve will be:

diLp

dt
=

VLp

Lp

=
VIN,min − VSW − VRS

Lp

where the RS term is there just in current mode.
Why minimum values? Well, if we want to obtain a certain input current,

we have to use, as critical voltage, the one which gives more problems: the
minimum input current corresponds to the minimum input voltage; we have
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so this equation. As VRS
we can use 1 V (this is an approximation: this

voltage is variable, but we may just take the worst value, so the maximum
one). About VSW, we know that the closed switch behaves as a resistance,
so we can use the maximum; we ask VSW to be a few percent of the input
voltage, and choose the switch with this constrain. Now, from this equation,
we can find our Lp:

Ipeak =
VIN,min − VSW − VRS

Lp
DmaxTSW

we can substitute it into our Eprimary expression:

Eprimary =
1

2
Lp

(

VIN,min − VSW − VRS

Lp

)2

D2
maxT

2
SW

Lp is the unknown: we can just reverse this equation, and obtain:

Lp =
1

2

I2
peak

Eprimary
(VIN,min − VSW − VRS

)2 D2
maxT

2
SW

by arranging:

Lp =
(VIN,min − VSW − VRS

)2

2
Psecondary

ηmagnetic
fSW

D2
max

This is the maximum value of Lp: we have to take a value which is less
or equal to this one.

Now: we want, in order to avoid saturation, that the average voltage on
each winding is zero; in order to do it, which is the voltage on the primary
winding? Well:

• during T1:

Vp = VIN − VSW − VRS

actually, we can just say that

Vp ∼ VIN

• during T2, the switch is open, diodes are conducting, and we have to
find the voltage over the secondary, then bring it back to the primary!
So:

Vp = − (V01 + VD1)
Np

NS1
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• during Tidle, all currents and voltages are zero.

Now, we know, for all times, the voltages; we have to evaluate the average,
and set it equal to zero:

(VIN − VSW − VRS
)D − (V01 + VD1)

Np

NS1
D2 = 0

we want to find the turn ratio:

Np

NS1

=
(VIN − VSW − VRS

) D

(V01 + VD1)D2

this is the last equation we need to determine the parameters to design
our magnetic component.

Now, we can assume to have

Dmax ∼ D2,max ∼ 0.4 ÷ 0.5

this is just an initial choice: we have to take account of the stresses, and
we are going to evaluate them.

Voltage stresses

The most stressed components are the diode and the switch; under the volt-
age stresses point of view, the worst states are the off ones: when diode or
switches are not conducting.

What about the diode, when it is off? Well, from one side we have the
output voltage; to the other side, the secondary voltage, which equals:

VD = V0 + VIN
NS

Np

we are considering just one diode, so don’t specify the subscript; this
is true for all elements. We forgot the switch and sense-resistance voltage
drops, but this is ok: this is an upper bound case!

In order to determine the max stress, we have to take the maximum VIN.
About VSW, the maximum voltage drop across it is when it is open; we

have to start from the secondary side, and find that:

VSW = VIN,max + (V0 + VD)
Np

NS
+ (0.2 ÷ 0.3)VIN

the last term derives from the leakage inductance: this comes from the
fact that our magnetic component is not ideal! We have a leakage inductance
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in series to the primary winding, and its magnetic flux lines are not concate-
nated to the secondary winding: this is leakage because, even if it doesn’t
dissipate any power, it does not bring power contributes to the secondary
windings.

Leakage inductance has an energy, so when we open the switch it has no
way to discharge, and we have an overvoltage which increases the voltage
stress on the switch.

A remark: VSW and VD stresses depend on the turn ratio: if we change
the turn ratio, we change the stresses on the components; we have to care
about the fact that we have to change also D and D2!

This is what we said: with the transformer, we have an extra degree of
freedom, and we can move the various stresses from one side to another of
the circuit.

Current stresses

In order to determine the current stresses, we have to evaluate iD, and ID,peak;
same thing for the switch: iSW, and ISW,peak. How to do it?

For iD we can use KCL (average is a linear operation!), so see that:

iD = I0

a bad idea is to find ID,peak from the winding current: with two windings
it is very difficult to do; what we may use is a smarter idea:

t

ID,peak

We know the average voltage, so we can reverse the average operation;
we know that:

i = Ipeak
D2

2
so
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ID,peak =
2I0

D2

A remark: D2 is basically the same for all secondary windings; this
means that they stop at the same time.

t

ID,peak

t

these are the waveforms we ideally have. Actually, as we can see in the
second graph, they are slightly more complicated: due to leakage inductances
on the secondary windings, we have some complications.

Now, in order to evaluate the worst stresses, we need the maximum

output current: we know that D depends on VIN and P0: D increases as VIN

decreases, and P0 increases.
What about D2? Well, on the output, we have that, if we need more

power, we have to increase this ares:

t

in order to do it, we have to make it higher and longer, so we have to
take the maximum D2: it is not independent to I0 so we have it.

What about the switch? Well, the current on the switch is something like
this:
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t

iSW =
ISW,peakDmax

2

where, since we know the slope:

ISW,peak =
VIN − VSW − VRS

Lp
DTSW

Now, it seems that we need both maximum D and VIN; this is not true,
because the two quantities are correlated: if D increases, we want a constant
peak current, so slope decreases, and also VIN!

Let’s consider the fact that we don’t know Dmin: a good idea may be the
one to use Dmax as parameter, so:

ISW,peak =
VIN,min − VSW − VRS

LpfSW

Dmax

May we change Dmax and D2? Well, of course! We just assumed the
values! But... If we want to reduce the peak current, we can change Dmax,
D2, and Ipeak; our problem is that, if we increase D2, we have to decrease
Dmax, in order to maintain the DCM

D2 + Dmax < 1

but, if we decrease Dmax, we increase Ipeak, because of the D2 dependence
of Lp. Let’s see some equations:

ISW,peak =
VIN,min − VSW − VRS

LpfSW
Dmax

but
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Lp = ηmagnetic
(VIN,min − VSW − VRS

)2

2PsecondaryfSW
D2

max

so, combining the two:

ISW,peak =
(VIN,min − VSW − VRS

) Dmax2fSWPsecondary

ηmagnetic (VIN,min − VSW − VRS
)2 D2

max

so

ISW,peak =
2Psecondary

ηmagnetic (VIN,min − VSW − VRS
) Dmax

If we increase D2, we have to decrease Dmax, but so current goes up.
There is another issue: if we increase D2, we have to decrease Dmax, so

ID,peak decreases, ISW,peak increases, but, if we consider also the turn ratios,
they change, and move the voltage stresses! Switch voltage stress decreases,
but diode voltage stress increases!

Primary winding stresses

Which are the stresses on the primary winding? Well, we have to evaluate
RMS and peak current for the primary inductance, Lp:

b

t

ILp,peak = ISW,peak

What about RMS? Well, we may use the simplified equation, and find
that:
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IRMS = Ipeak

√

Dmax

3

we use the maximum duty cycle Dmax in order to consider the maximum
RMS current.

What about the RS sense resistance for current mode? Well:

RS =
1 V

Ipeak,max

and

Pdiss = I2
RMSRS

Capacitors stresses

What about the capacitor stresses? Well, we have two capacitors: input and
output (actually, more than one output capacitor: one for output!).

For input capacitor, there are (due to its lucky position) two important
values: voltage, and RMS current (ESR is not important because this is a
low-stressed capacitor, and because ESR controls the ripple). In order to
evaluate RMS value, we can use the quasi-KCL:

ICin,RMS =
√

I2
RMS − I2

DC =

√

I2
peak

Dmax

3
−

(

Ipeak
Dmax

2

)2

=

this, using the Nutella theorem; arranging:

= Ipeak

√

Dmax

3
− D2

max

4

What about output capacitors? Well, we have to evaluate three parame-
ters:

• working voltage (which equals the output voltage);

• IRMS: same story as before! By simple math, we can easily proof that
the formula equals (with some changes) the previous one:

IC0,RMS = Ipeak

√

D2

3
− D2

2

4
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• if we have a ceramic capacitor, we have to specify the capacitance value
(by taking the capacitance equation, integrating it, and obtaining the
amount of charge over C; if we have an electrolytic capacitor, we have
to find the RESR, which controls the output voltage ripple, and use it
in order to choose the capacitor model.

3.1.2 Power losses in switches

In switches, we have two kinds of losses:

• conduction losses (which can be evaluated simply by calculating rds,on

times I2
SW,RMS);

• switching losses: losses which happen each time we open or close the
switch.

The most important losses in switches are the last ones.
Why do we have those losses? Well, let’s consider an ideal switch: when

it is closed, it is similar to a piece of wire; when it is open, it is similar to
an open circuit. What we didn’t consider is what happens in between! We
open and close the switch in a non-zero time! This means that, for a time,
we have both current and voltage which are non zero! This, for both opening
and closing situations!

All our switches have an inductive load:

This is an example, with a boost converter. What happens when the
switch open and closes? Well, we can use this model for this switch:
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t

iMOS

What we assume is that current goes down linearly; and toff is the turn-

off time. Current is constant, because toff � TSW, so we can see it as a
constant value. In MOS, toff ∼ 0.1 µs.

For a short period of time, we can say that an inductor behaves as a
constant current source; just for toff , so, we can analyze this circuit:

t

iL

iD

iMOS

VDS

Let’s suppose that current is for example 3 A: the switch doesn’t want
to stop 3 A instantly, but asks just for less current. iL is constant, iMOS

decreases linearly, and so the extra current (the difference of the inductor
and the MOS current) goes into the diode.

Bad news: VDS voltage is 0 before the starting time, because transistor
is closed ; if we increase the current on the diode, we turn it on: in order to
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make a diode be conductive, we must accept a voltage drop on it; when we
have both current and voltage, we have power dissipation!

VDS = VD + V0

Actually, we have something like this:

t

iL

iD

iMOS

VDS

There is a time for charging all capacitances, and then to make voltage
increase; so, once we charged the capacitances, the current slope decreases.

The ideal instantaneous power is something like this:

t

voltage stays constant, current goes down, and so power goes down with
the same behaviour of the current: in this model, linearly.
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We care especially about average power: the energy lost in each opening
action is just the area of the previous curve. We have so to calculate the area
of a triangle:

Elost =
VSWISWtoff

2

Where VSW is the voltage after that the switch opens, ISW the current
we have on the switch before it opens. We can find the power simply by
multiplying it for fSW:

Plost =
VSWISWtoff

2
fSW

VSW is known; ISW may be determined from the power level of the con-
verter; toff can be decided by choosing the MOS; fSW is a degree of freedom
of our design, but we can’t choose it too low: lowest the frequency, biggest
the devices!

Turn-on losses are exactly the same: we just have to read from right to
left the last graph, in order to obtain the same thing. We still have the
constant current generator instead of the inductor, the closing switch, the
diode, but now the switch asks for more current, not for less current! DCM
shows us an advantage, now we have that Imin = 0, so we have no turn-on

losses in DCM.
What about MOS voltage? Here, diode conducts until switch is closed,

so we have voltage across it until we have current on the diode; we still have
a triangular waveform:

t

iL

iD

iMOS

VDS
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we have:

Ploss =
VSWISWton,sw

2

where VSW is the voltage across the switch before the closing process, and
ISW is the current across the switch after the closing process.

3.2 Forward converter

We are going to introduce a converter which derives from the buck con-

verter. A first step so may be to remember how a buck converter is:

b
A

We want to add, to this converter, a transformer. A transformer can not
handle DC voltage, due to saturation, so we must add it into points with AC
components: input or output are bad points!

We may do something like this:

b b

Let’s remember that buck is a direct converter; this means that this must
be a transformer, not two coupled inductances: with coupled inductances our
purpose was to store energy as magnetic field, now just to obtain something
similar to a transformer; this means that the magnetizing inductance Lp

must be the highest we can obtain.
We have magnetics; this means that, for every winding, we have to be

sure to have:

vwinding = 0

Let’s analyze this topology: when we close the switch, we put VIN to
the primary winding; this means that we have a positive voltage to the dot.
When we open, the diode closes, so we have something similar to zero as
voltage on the secondary winding; this reflects into the primary winding:
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• TON : Vp = VIN

• TOFF : Vp = 0

This behaviour has a DC component (an average) which is different from
zero.

How to solve this problem? Our problem is the diode D: it is forcing the
connection to ground, during TOFF: we can’t go under ground, due to this
diode.

Our solution may be this one:

b

D2

D1

This diode behaves like this:

• during TON we apply positive on dots, so D2 is on, D1 is off, and we
deliver energy to the output;

• during TOFF, the Lp makes all polarities change: we have that diode
D2 is off, and D1 is on; on the node A we have 0 volt, and D2 impose a
reverse voltage, which is a negative voltage; this permits to reduce the
flux, without bringing nothing to the output: this diode decouples D1

and the secondary winding.

Now, let’s consider the equivalent circuit for this transformer (we can
swap switch and transformer because they are in series):

b

D2

D1

b

bc

What happens for im? Well:
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• during TON, we have the same result of all times: across Lm we have
a positive voltage with plus on top, so im increases and we store in it
energy, as magnetic flux;

• during TOFF, the switch open, so D2 opens, D1 closes, and im keeps
going; im goes to the transformer, through the non-dot side, but here
can not flow: D2 does not allow current to go through this direction;
this means that our switch and D2 will go in breakdown.

We need to provide some path to im: after storing energy in this induc-
tance, we have to release it, in order to prevent saturation! What we can
do in order to solve this problem, to provide this path for the magnetizing
inductance current, we have to add another winding, just to remove energy
in a controlled way from the magnetic core. The idea can be realized in the
following way:

b

D2

D1

b

bc

b

b

This third winding has some kind of tiny-flyback on it: it is an extra-
converter which must just remove the energy from the magnetizing induc-
tance, just to prevent the saturation of the magnetic core. This energy can
be recovered, simply by connecting this tiny-flyback to the input.

Now, let’s calculate all the stresses and design equations for this converter.
Let’s start from V0(VIN): from the secondary winding up, we have a buck

converter:

D2

D1
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this means that, starting from the secondary voltage VS, we have:

V0 = DVS

if we want to be more precise, we can release the ideal-diode approxima-
tion:

V0 = DVS − VD

This is true for both TON and TOFF times: during TON the voltage drop
comes from D2; during TOFF, from D1. In order to be very precise, VD is the
average of the diodes voltage drops, but if we assume that D1 ∼ D2, we have
the same VD, so it equals the average. We can write VS as function of the
voltage on the primary winding, so:

V0 = (VIN − VSW − VRS
)

NS

NP
D − VD

The RS voltage drop as usual is here only if we design for current mode:
with voltage mode controllers, we don’t have anything which senses the cur-
rent, so any other voltage drop.

If we remember the various positions from where we can sense current,
we can remember that there are two good places for the sense resistance; the
best solution is this one:

b

D2

D1

b

bc

b

b

RS

This is the best solution, because RS is connected to ground; current
mode is very good because now RS protects the switch from the transformer
saturation.

We showed one equation; now, the second equation, is this one:
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L >
(1 − Dmin)Rmax

2fSW

this is the classical buck design equation.
Respect to the buck case, we have an extra degree of freedom: the turn

ratio! We can choose the duty cycle and determine NS/NP. Usually, what
we do in the previous equation (not the L one) is to choose VIN,min and Dmax,
obtaining:

V0 = (VIN,min − VSW − VRS
)

NS

NP
Dmax − VD

this, because we know that the maximum duty cycle is limited by Lm: we
have a very short 1−D, and it means that we can’t discharge our transformer,
because time is too short.

What about the tertiary winding? Well, as first choice, we may use

NT

NP

= 1

usually, this is a good choice, for two reasons: the first one will be ex-
plained later; the second one is that, when we wind the primary winding, we
have to remember that im is a very small current; what we can do is to turn
the wires together with the primary winding wires, but just in the interstices
between two big wires:

b bb

Now, let’s remember our main constraint: in order to prevent magnetics
saturation, we must have:

V P = 0

but we know that:

• during TON:

VP = V0

• during TOFF:

VP = −VIN
NP

NT

192



Given this idea, we may evaluate the average voltage, and put it equal to
zero:

V P = DVIN − (1 − D)VIN
NP

NT

= 0

so we can reverse this equation and find:

D − NP

NT

(1 − D) = 0

so

NP

NT
=

D

1 − D

Now: we said that a good initial choice may be to have NP = NT; in this
case, we obtain, from the previous equation, D = 0.5.

This equation explains us something: if we increase the magnetic flux for
a time, we have to decrease it for the same time, in order to have, at the end
of each cycle, zero flux into the magnetic core, and prevent saturation.

If we reverse the previous equation, we can find a relation between D and
the primary-to-tertiary turn ratio:

D =

NP

NT

1 + NP

NT

This means that if we choose a different turn ratio, we can increase the
duty cycle; for example, if we choose NP/NT = 3, we have Dmax = 0.75. This
is just a little increase of the duty cycle, but which introduces very bad side
effects, on the voltage and current stresses.

Device stresses

For every diode, we need three quantities: Ipeak, iD, Vreverse. Let’s calculate
them for each of the three diodes.

• For D1, we have that the peak current is the inductor peak value, and
we know it:

Ipeak,1 = I0 +
1

2

V0(1 − D)

LfSW

about the average current, it is just I0, during a normalized time 1−D:
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iD1
= I0(1 − D)

about the reverse voltage, we have to see what happens into the primary
winding, and brind it to the secondary; when the diode is open, the
switch is open, so we have:

Vreverse = VIN,max
NS

NP

• For D2, we have to evaluate all these quantities. About the peak cur-
rent, nothing new: just the inductor’s one; about average voltage, in-
stead of during the TOFF time, this works just during the TON time, so
we have something like:

Ipeak,2 = I0 +
1

2

V0(1 − D)

LfSW

iD2
= I0D

about the reverse voltage, we have something different: this diode has,
when it is reversely biased, at the right pin a voltage close to zero, and
at the left pin, the secondary voltage. This diode works together with
the third winding, so we have to refer the secondary voltage to the
tertiary voltage, which is VIN:

Vreverse = VIN
NS

NT
= VIN

NS

NP

NP

NT

• For D3, Ipeak and iD2
depend on the magnetizing inductance Lm, so we

can’t know them.

The reverse voltage can be specified: we know that it occurs during
TON, so:

Vreverse = VIN +
NT

NP
VIN

• For the switch, we need something different: peak current, minimum
current, RMS current, average current, switch reverse voltage, rDS,ON.

About the maximum current (the peak current), we can use again the
transformer equations, and find:
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Imax = IL,max
NS

NP

(we have to change numerator and denominator because we are talking
about currents). Actually, there is also an extra term:

Imax = IL,max
NS

NP

+ im,max

This is a more complete equation: we missed the magnetizing current.

For the minimum current, we have:

Imin = IL,min −
NS

NP

here we don’t have any magnetizing current term, because that term
is gone into the tiny-flyback, which cares about it.

About the voltage of the switch, we have:

VSW = VIN + VP

where VP is the reflected voltage respect to the flyback part. So:

= VIN + VIN
NP

NT
+ Vspike

we have again this Vspike term, which is from 20 % to 30 % of the
VIN,max. This is the side effect we mentioned: stress is quite high, and
if we increase the primary to tertiary turn ratio, we increase the stress.
Our switch will be very stressed. About rDS,ON, we have

rDS,on =
VSW,max

Imax

• About C0, we have the same situation as buck converter.

• About RS, we have the same situation of all times:

RS =
1 V

ISW,max
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• About Cin, we must specify at least two quantities: the working voltage,
and the RMS current. Working voltage is trivial: just VIN,max; about
RMS current, we have something different:

ICin,RMS = I0
NS

NP

√
D − D2

the worst value for the root square is 1/2; so:

=
1

2
I0

NS

NP

Generally, we set Dmax = 0.5; this can be set with some circuit, which
permits to blank over this time. The actual steady state must be something
less, because, if the very maximum duty cycle equals 0.5, with NP = NT,
we must have some margin. This margin is not due to tolerances or similar
things, but for another reason: it may happens that the load current iload
become higher, if load changes; when we increase, due to a load change, the
output current, inductor can not provide it, because an inductor can not pro-
vide spike currents (current is the inductor’s state variable); the only device
which can provide the extra current is the output capacitor, which will be
discharged, until it loses too much charge, so some voltage, and capacitor
voltage equals output voltage. The controller sees that output voltage goes
down, and tries to increase the duty cycle, but it is useless: the inductor cur-
rent must increase in a continuous, smooth way. Controller keeps for asking
for more current and so, when L has a good current, and we increase load
(asking for less current), inductance has a too high current even if capacitor
is charged, and controller saturates.

The maximum D we want in steady state is less than the maximum: if
we have some extra-power margin, we have some more change speed, so we
can increase some kind of acceleration. In order to have a short load-up time,
we can use, for example:

Dmax,steady−state ∼ 0.4

This is like putting the gear off.

Final observations

This converter may give more power respect to the previous ones: it can
handle 100 W to 200 W (usually, not more!). This means that it can handle
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more power respect to the flyback converter, but it is also much more expen-
sive: it requires two power diodes, and two magnetics: we have an inductor
(the buck’s one), and a transformer (with the three windings): this is very
big, and very expensive.

If we want to get more outputs we need to add another inductor and
other two power diodes: this is very expensive, and hard to control: all the
windings must be controlled to work in CCM, so we have to guarantee a
minimum load in both of them. A better idea may be this one:

b
b

We can wind the two inductors on a single magnetic core, using as con-
dition:

NS1

NS2

=
V01

V02

This allows us to have just two magnetics: more complicated than a
flyback, but not so worse that the standard forward converter. There is
another advantage: we have a single flux for both the new windings, and flux
does not drive in DCM.

We have also a better load regulation: the outputs are connected together,
because if we change the load on one of the secondary windings, we change
the current, and this is sensed by the transformer: we can just connect
the feedback to one of the secondary windings, and it will regulate all the
windings.

Another advantage: now leakage inductance are needed: if we connect
two voltage sources through coupled inductors, we have something like this:

b b

Now: this works just if:
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V1

V2
=

N1

N2

If this is not true, we obtain some kind of short-circuit, in which we
have a high current: we can’t add two voltage sources in parallel! Leakage
inductance so is good, in order to limit this short-circuit circulating current,
which is very high. This structure/idea is used for all buck-derived converters.

3.3 Full-bridge converters

Are we happy of the previous converter? Absolutely not! The first trans-
former is used for just 40% of the time, and for the remaining time we are
just discharging the magnetic flux. This means that our converter is used for
a very short time.

Our purpose is to exploit this transformer, without driving it into satura-
tion; an idea may be to connect for a time the primary winding to a positive
voltage respect to ground, and for another time (which must equal the pre-
vious one, if voltages are equals) to the same voltage, but negative respect to
ground. This allows us to have v = 0, and to deliver power to the output for
more time, increasing the using time of the converter. If we are able to do
something like this, we can transfer energy during both charge and discharge
phases.

The voltage on the primary (so also on the secondary) winding will be a
square wave like this:
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This waveform has zero average; this is good from the magnetics point of
view, but not good from the output point of view: at the output in fact we
need a DC, and we can not obtain it from this waveform. This means that
we have to rectify it (let’s remark that now we don’t know how to realize it,
but we will study it later).

In order to rectify this waveform, there are two main solutions:

• using a Grätz bridge (also known as full-rectifier bridge);

• using a center tap transformer.

b b

b

b
b

Let’s study the differences between the two rectification techniques.

• The left solution has four diodes, but just one secondary winding; the
right one has less diodes, but a more complicated transformer.

• Average current stresses are the same: the i0 current comes from a
node which connects two sides of the circuit in both cases. For a node
we can use the KCL, so we have, on each diode:

iD =
1

2
i0

• Reverse voltages are different: with Grätz bridge we just have the volt-
age on the secondary winding:

V
reverse,Grätz = Vsecondary

in the center-tap solution, we have that, if a diode is closed, on it we
have twice the secondary winding, because when diode is open, we have
on it the two secondary windings voltages:

Vreverse,center−tap = 2Vsecondary
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• Also output voltages are different in the two cases: what change are the
voltage drops between output and secondary winding? Well, in center
tap, we simply have:

V0 = Vsecondary − VD

We have a voltage drop equal to one diode voltage drop.

In full-bridge, we have to pass through two diodes, so the voltage drop
will be the double of the previous one.

If we are designing a high output voltage converter (50 V up) full-bridge
converter is the better choice, because we waste a few volts, but we also have
less stress on each diode; on the other side, if we have a low output voltage
converter (from 50 V down), this is bad: output diodes are wasting a lot of
power, so center-tap solution is the better one.

The converter can be completed by inserting the output low-pass filter:

b

b
b

Do we need the free-wheeling diode? Well, we know that the waveform
is the previous one, so voltage does not go under zero: this means that this
diode is never directly biased, and current just goes through the two diodes.
Current, during the TOFF time, will go from the D1 and D2 diodes.

When primary winding is on an open circuit (so when the switch is open),
how much current goes through D1 and D2 ? Well, we have a transformer,
and we know that current on each winding depends on the turn ratio of the
windings: this means that the current through those diodes depends on the
turn ratio of this particular transformer: during this TOFF phase the only
windings working in the transformer are the two secondary windings. The
two windings, in order to have the same voltage transformation (we are just
rectifying, not changing the voltage levels), have the same number of turns,
so we have the same voltage and the same current on the two secondary
windings.

If we plot the voltage on the secondary windings, and the currents on
them, we obtain something like this:
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Let’s describe this graph: when we have the positive pulse, so during the
first TON, we have that the iD1 is positive and increases with a slope like

VIN − V0

L

and iD2 is zero. During TOFF, there is something different: both D1 and
D2 start conducting, with half of the inductor’s current; next cycle, when we
have the second TON, the situation reverses: we have iD1 = 0, and iD2 equal
to the inductor current; second TOFF equals the first one. These strange
waveforms are the one which we can observe on a scope.

Let’s think about what we obtained: supposing that we can realize this
ideas, we have to describe the behaviour of this converter, up to the secondary
winding, with four steps:

• during the first TON time, we connect to the primary winding a positive
input voltage;

• during the first TOFF time, we keep the primary winding open;

• during the second TON time, we connect to the primary winding a
negative input voltage;
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• during the second TOFF, we keep again the primary winding open.

Let’s remark that TON,1 = TON,2, and that TOFF,1 = TOFF,2; this means
that, from the primary (and secondary) winding point of view, we have a
duty cycle D which must be less or equal to 0.5 : D is the normalized time in
which voltage is non-zero, in the square wave; this means that this D must
be defined as:

D ,
2TON

TSW

If we have D > 0.5, it means that we have (due to the fact that the two
TON are the same) both positive and negative voltages at the same time, and
this is absurd!

This D was the duty cycle seen from the transformer; after the trans-
former, we have the buck converter, which is fed by the output of the rectifier;
when we rectify this waveform, we obtain a waveform with a period equal to
half of the previous period, so with the double of the frequency respect to
the previous one (in fact, before of the rectification we had a positive and a
negative peak, now we have just positive peaks, so the periodicity changes);
now, so, we obtain that:

TSW,buck =
1

2
TSW

so, considering again the definition of D:

Dbuck =
2TON

TSW,buck
=

2TON

1
2
TSW

= 2D

now, the maximum duty cycle is:

Dbuck,max = 2Dmax = 1

In our analysis we didn’t care about magnetizing current: L, in our mag-
netic transformer, is not infinite, so it will store some energy as magnetic
flux, and it will have some current on it: we have an im. This im will unbal-
ance the two descending currents on the two diodes, so the actual waveform
will be something like this:
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Another remark: in this circuit, we have that, even if we don’t have
any voltage feeding it, during TOFF there is some current into the secondary
winding. Why?

b

b

b
b

Well, this question is stupid! This question presupposes that we are
applying some kind of superposition principle, but this circuit has diodes, so
it is a non-linear circuit! We have the inductor current, and some non-
linear elements, so even without biasing there is some current, due to the
non-linearities of this system.

3.3.1 Realization of the input stage

How to solve the problem of the input stage? How to realize the bi-polar
voltages? Well, the idea is to use two couples of switches, in this way:

bc

bc

bc

bc

b

bb

b

S1

S2

S3

S4
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When we close S1 and S2, we have, as voltage:

VP = VIN − 2VSW

When we open S1 and S2, and close S3 and S4, we have:

VP = −VIN + 2VSW

Actually, this can be simply realized with a Grätz bridge, or with an H
switch:

b

Let’s remember that the maximum D, for each one of these switches, is
50%, in order to obtain zero DC voltage.

Our Cin capacitor experiences, each time we close the switch, a current
pulse; which is the frequency for these pulses? Well, it is the buck fSW (so
fSW,buck): one time we open, one time we close, so we have all those pulses
running on them.

A disadvantage of this structure is the fact that there are many switches;
there are many integrated circuits which can realize those functions.

This structure has also many advantages: we are using our transformer
for a long time (80% of the switching period). If we realize the H-bridge with
MOS transistors, we have another advantage:

b

For free our transistors have a body diode, so the maximum voltage that
the switches can experience can not be more positive than the VIN voltage:
those diodes act as clamping diodes, so they limit the maximum voltage drop
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to VIN. This means that, respect to forward, we don’t have spikes (because
they are clamped), and so much less stress.

This topology is very good for high input voltage and power converters,
because it doesn’t stress too much the various components. If we have low
input voltages, from the other hand, we can not use it, because we have that:

VP = VIN − 2VSW

in the primary winding we have many losses: this is not good. From 200
V up it can be a very good converter.

What about the other stress components? Well, we have iSW and iIN.
About iIN, (1) is a node, so we can use, for averages, the KCL; we have that:

iSW =
1

2
iIN

each transistor will experience half of the input current.
This topology is named full-bridge, and it is good for high powers, be-

cause it reduces stresses. It can be used from 500 W up. If we design large
transistors and other components, this topology can work also with 1 MW.

Let’s study the design equations:

b

b
b

b
b

b

This is quite similar, from the formulas point of view, to the forward
converter:

V0 = (VIN − 2VSW)
NS

NP
Dbuck − VD

As degree of freedom, we can choose Dbuck,max; it can be 0.8 ÷ 0.9 (we
have to take account of the acceleration issue). About the inductance:

L >
(1 − Dbuck,min)Rmax

2fSW,buck
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This is a high power topology, so it requires low switching frequencies
(about 50 kHz).

In order to perform the design, we have to estimate Dmin; there is an
approximated formula, which gives:

Dmin = Dmax
VIN,min

VIN,max

A complicated parameter to evaluate (the only one which changes from
the previous cases) is the RMS current, of the strange waveform of the diodes;
we can just perform some flat-top approximations and get rid of them.

Just one more final note: we can not guarantee that:

TON,S1,2
= TON,S3,4

this, because of tolerances. This means that we may have DC compo-
nents. How to erase them? Well, simply by putting a capacitor in series to
the primary winding:

b b

We want that this capacitor blocks DC and allows current to go forward
and backward; when current goes through it, it charges/discharges, so, by
inverting its equation, we obtain:

∆vC =
1

C

∫ TON

0

iPdt

This derives from the fact that:

∆vC =
∆Q

C

Usually we design ∆vC in order to have:

∆vC � VIN,min

In order to evaluate the integral, so the amount of charge ∆Q, we may
calculate iL; this may be done by considering the output voltage, reflected
on the primary winding:

iP = I0
NS

NP
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Let’s remark that this capacitor does not add any loss: one time we
increase voltage on it with a polarity, one time we increase it with the other
polarity, so in average we have zero extra voltage due to this capacitor. Let’s
remark that our capacitor can resonate with the inductance, introducing
some kind of oscillation; this is not too bad, so we can ignore this effect and
do the design.

This capacitor must be used if we want to control in voltage mode.
What about current mode? Well, we need to measure current, instead of
voltage, and we can do it on the primary side, in order to protect our switches
from the transformer saturation. We have to measure current for both the
TON times; so putting it in series of the transformer may be a bad idea:
voltage swings up and down, and this is a common mode voltage; current
goes in opposite directions in the two cycles, so we have to use another idea.
The best idea is this one:

bc bc

bc bc

VAL

RS

We put the two switch couples together and put RS between them and
ground. If we want to add the current mode control, we can also introduce
the low-pass filter.

Our pulses will have a waveform like this one:
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Ipeak

iP

t

This is the behaviour of VRS
: we have pulses with the same polarity.

Let’s remark that we have also another current, on the primary winding: the
magnetizing current, which may introduce some problems: im can be a little
higher or lower respect to the ideal, to the expected one, and this is added
to the current reflected from the secondary winding; this can change the
voltage drops on the various points of the circuit, so the measured quantities.
Current mode control senses the peak value, so an extra unbalance current
introduces some changes respect to the ideal case: one pulse will be narrower
the following one wider, and so on. The fact that current mode stops this,
permits to keep our global system balanced.

A remark: we are not using any Cp capacitor, so any capacitor which
must stop DC; may we use it? Well, if we do it, we obtain a no-working
system: current mode maintains constant the peak value, but not the area of
the pulses, so the behaviour of the capacitor is conditioned by the behaviour
of the current mode controller.

Final question: do we need a compensation ramp, for current mode con-
trol? Well, the duty cycle we have to consider is the buck converter one,
because it could be unstable! And it is the double of the switch duty cycle:
we definitely need a compensation ramp.
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3.4 Push-pull converter

Let’s consider something different respect to the full-bridge configuration:
what happens if we use MOS switches instead of diodes, with the center-tap
configuration used as driving configuration? Well, we obtain something like
this:

bc

bc

b

b

b

VIN

we have a center-tap primary winding, two switches instead of the two
diodes, we put them together and connect the center of the center tap to
ground, and the two switches to VIN.

Well, the idea is good, but it has a problem: now our switches are con-
nected to a positive voltage, but this means that they are high-side tran-
sistors, and we don’t like them! Let’s consider this circuit:

b

b
b

VIN

This is the push-pull topology: it derives from a center tap rectifier, and
it has the same properties:

iSW =
1

2
iIN

this, because for one half of the cycle current goes through S1, for the
other half through S2. This means that we reduce current stresses on the
switches.
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About the reverse voltage, we have that, when one transistor is closed,
all voltage goes to the open one:

VSW,reverse = 2VIN

this is bad: we have twice the input voltage, on a single transistor: this
is bad under the voltage stresses point of view.

The third parameter was the voltage drop between input and primary
winding: now we have, for each half-cycle, in series to VIN, just one switch.

This topology is good for low input voltages, due to the high stresses, but
may be used for high powers, thanks to the low input current stresses; it can
work from 100 ÷ 200 W up.

What about the control for this topology? Do we prefer to control it in
voltage or in current mode? Well, we have to remember the flux-runaway
problem: each time we charge and discharge a transformer, we risk to saturate
it, and damage the problem. Can we introduce the Cp capacitor before the
primary winding? Absolutely no! It can not be introduced there, because it
goes in series to the DC voltage: we have no place for Cp, so we have to use
current mode.

Actually, sometimes voltage mode works: this because if we have flux
runaway, we may have higher average voltage in one side respect to the other
side, so in some cases the parasitic resistances of the transistors may dissipate
the magnetizing current and prevent saturation. With bipolar transistor is
even worse, because if we have two transistors with different currents, we
heat up one transistor more than the other. Bipolar transistors have long
switching time, so we need a long time to put the switch off, we apply a
longer pulse on them, and it may be damaged or destroyed.

Supposing that we are using control mode, we have that output voltage
equals:

V0 = (VIN − VSW − VRS
)

NS

NP

Dbuck − VD

Under some points of view, this topology is better than the full-bridge one:
now we have one switch voltage drop instead of two of them, because now
we have just one switch between the input voltage and the primary winding.
The inductance must be designed exactly as in a full-bridge power converter.
The limitation of this topology is the fact that we must use current mode
controls.
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3.5 Half-bridge converter

Let’s consider this circuit:

b

bc
bc

b

b

VIN

2

Let’s suppose that, in some way, we are able to introduce half of the input
voltage (it will be very easy); when we close S1, we have that:

VP =
VIN

2

and, when we close S2 and open S1, we have:

VP = −VIN

2

This permits to drive the primary winding with positive and negative
voltages, so to avoid saturation.

In order to realize this, we can use a circuit like this one:

b

bc
bc

b

VIN

b
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a capacitive voltage divider: we can not use inductors, which are short
circuits respect to DC (and more expensive), and we prefer to avoid resis-
tances (which introduce losses, reducing the efficiency η), so capacitors are
our best choice.

What about the final parameters for this topology? Well, we can see that
the maximum reverse voltage across each switch equals the input voltage:

VSW,reverse = VIN

About the average current respect to the input one:

iSW = iIN

in fact, when a switch is closed (and the other one is open), all the
current flows through it; capacitors obviously have no average current! And,
obviously, we have just one switch between input voltage (which is halved)
and output voltage.

This circuit is perfect for high input voltages, and relatively high current
stresses (it depends on the input current, actually, so it is worse respect to
the push-pull): it can handle medium power levels (quite high powers, but
less respect to full-bridge); this, due to the capacitors: about 500 ÷ 700 W
are good. Usually, we put a PFC in front of it, and then it.

In this circuit, we can use voltage mode thanks to the capacitive divider:
adding a capacitor can be easily done, as we will show in a moment. The
output voltage equation for this circuit is:

V0 =

(

VIN

2
− VSW

)

NS

NP

Dbuck − VD

A typical use of this converter is in PC (Personal Computers), desktops;
the schematic we usually find is this one:
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b

VIN

b

b

C

Cp

C

There is also the Cp, between the capacitive divider and the inductor.
Usually, we introduce electrolytic capacitors, for 200 V (our main voltage),
of something similar to 200 µF. These two capacitors cost less than one
single capacitor which handles 400 V, so we can rectify our main voltage and
obtain our converter. The Cp capacitor is very important, because the two
main capacitors have a too high capacitance, and we risk to saturate the
transformer before charging them.
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