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Chapter 1

Introduction

Perturbative methods are always applied to mathematical models; when a
model is very complicated, it is possible to exploit the fact that there is some
very little quantity with respect to the other ones, in order to modify the
model, transforming it in an easier model. Therefore, the most significant
point is the determination of something “little”; what does “little” means?
It is necessary to determine some criteria aimed at studying quantities.

When complicated models should be used, even the straight application
of numerical methods may be not possible or not convenient; if problems
are nonlinear or have some instabilities, this procedure can not be used;
therefore, also physical models can be useless, if they are too complicated.

As we suggested, the idea is to simplify a model, building something
easier starting from it; in some sense, we distorce the physics of the problem,
introducing some approximations; if our scenario fits in the range of validity
of the approximations, it is possible to do this, and to obtain very accurate
results; however, a discussion of the validity of this kind of approach should
be carried out.

This is the idea of perturbation methods: we look for something small
in the problem, then we introduce some modification, approximation to the
model, in order to tackle the easier problem by means of numerical methods.
An example is the transport model: it is a very complicated model, even
if very good, so the direct application of numerical methods on it is not
possible; by introducing approximations, it is possible to obtain for instance
a diffusion model, which can be studied very easily. Obviously, the transport
model degenerates into a diffusion model only in a very specific range of
situations; out of these, it is not possible to do this.
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Another very important concept is the one of local solution: the start-
ing model is able to give information on each point; however, probably, this
is too much: many times it is not necessary to obtain all this information,
since only some parameters of the phenomena are interesting. Perturbation
methods can provide the user with global solutions; these are parameters con-
taining information on the global behavior of the phenomenon, synthesizing
information in some numbers. An example may be the solution of transport
equation; the solution of transport equation is n, which is the density of
neutrons; it is function of several variables:

n = n(r , E,Ω, t)

where r is the position, E is energy, Ω is the considered direction, t is time;
this is too much information! Many times, we want to handle global infor-
mation, in order to synthesize it.
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Chapter 2

Setting basic perturbation
methods

2.1 Introduction: Frobenius vs perturbation

methods

As we have discussed, in order to formulate a perturbation method on some
problem, it is necessary to identify a parameter which is very small with
respect to the other ones; then, we call it ε. We have to recall the fact that
our objective is to obtain easy models, therefore it is necessary to formulate
all this stuff keeping into account of the difficulties of the problem: if ε is
related to some part of the problem which creates complications, it is better!
For instance, if ε is a non-linear term (which disappears, if we set ε = 0), the
problem is well formulated! In other cases, ε may have a physical meaning.

Perturbation methods are based on the following idea: we write the solu-
tion of our problem as a linear combination of ε powers; this is a perturba-
tion expansion. In order to clarify, let us consider the following differential
equation:

y′′ =

(
1 +

ε

1 + x2

)
y

if ε = 0, this problem becomes very easy; in fact, if ε = 0, we obtain the
following differential equation:

y′′0 = y0
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(the 0 indexes that we consider the 0-order approximation). In order to
obtain a higher-order approximation, we have to write y(x) as:

y(x) = y0(x) + εy1(x) + ε2y2(x) + ...

We hope that, knowing y0, we can find y1, then y2, and so on.
It is very important to remark that in this case we are not expanding

y(x) as a power series of x, but as a power series of ε; when we expand
as a power series of the independent variable of the problem, we apply the
Frobenius method. The Frobenius method returns a solution which is
very good in the neighborhood of a chosen point (for instance if we expand
as
∑

n(x − x0)n, the approximation will be very good in the neighborhood
of x = x0); on the other hand, since the expansion is in ε, what we obtain
from a perturbation method is a quite-good global approximation; this is
completely different from the Frobenius approach, which returns something
good only in one point! However, these are different methods for different
purposes.

2.1.1 Application to an algebraic equation

As first example, it is possible to focus on an algebraic problem:

x3 − 4.001x+ 0.002 = 0

we want to solve this problem by means of perturbation methods; it is possi-
ble to observe that the coefficient of x equals 4, plus a little bit; let us define
ε as that “little bit”:

ε = 0.001

so, the algebraic problem can be rewritten as follows:

x3 − (4 + ε)x+ 2ε = 0

ε is small with respect to the other terms; therefore, roots will change as
we change ε, but “not too much”, if ε stays in the order of magnitude of
0.001. Since we identified ε, the second point of the procedure is to write the
solution of the equation as a perturbation series:
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x(ε) =
Nε∑
n=0

anε
n

Let us try to answer to this question: is the problem easier for ε = 0 ? Well,
let us rewrite the equation in this case:

x4 − 4x = 0

somehow, it is! Indeed, this equation has three known solutions, which are:

x(x2 − 4) = 0 =⇒ x = 0, x = +2, x = −2

Now, let us consider the root x1 = −2, and let’s just focus on in for some
time; if ε = 0, it means that we are truncating the series at the zeroth order;
then, let us try to find, for this solution, a higher order approximation, e.g.
first order; the perturbation series is:

x1(ε) = a0 + a1ε

if ε = 0, x1 = a0, so x1 is the root of the problem approximated with the
zero order approximation:

a0 = x
(zero−order−approx)
1 = −2

so:

x1 ∼ −2 + a1ε

how to find a1? Well, we still know the algebraic equation, the starting
problem, which was the equation

x3 − (4 + ε)x+ 2ε = 0

to find a1, it is simply possible to force this approximation to be the solution
of this equation; therefore, it is necessary to substitute x1 in x:

(−2 + a1ε)
3 − (4 + ε)x+ 2ε = 0

now we are trying to find a 1-order approximation; indeed, x1 = a0 + a1ε;
this means that whatever belongs to an order greater than one should be
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neglected; so, the terms in ε2, ε3 and so on should be neglected; so, using this
procedure:

−8 + 12a1ε+ 8− 4a1ε+ 2ε+ 2ε = 0

which is:

a1 = −1

2

a remark: the dependance in ε should disappear from the calculations, if
everything is correct!

What have we found? Well: to find a1, we needed only information
about a0, so about the approximation of lower order; we didn’t use any other
information.

It would be nice if a1 does not change increasing the order of the ap-
proximation; this would be similar to the behavior of the eigenfunction ex-
pansion of an operator; indeed, if the operator is self-adjoint (and compact),
the eigenvectors (eigenfunction, eigenstates) are orthonormal, and so since
the expansion functions are the eigenvector, the expansion coefficients are
the eigenvalues, an eigenvalue is a function of its eigenvector only: indeed,
if they are orthonormal, they give no contribution to the other expansion
coefficients.

In this case it is possible to prove that, for the perturbation series, there
is the same effect of the eigenfunction expansion: the addition of new terms
does not affect the previous coefficients.

So, let us go on:

x1(ε) = a0 + a1ε+
∞∑
n=2

anε
n

this series is O(ε2); this means that the error in approximating the expression
is O(ε2) (in analogy with the notation used for the Taylor expansion, where
the error is evaluated on x; in this case, this is not a local approximation
such as the Taylor expansion, but it is global; the error has to be evaluated
with respect to ε.

Let us show that adding new terms, we do not have to modify the previous
ones; let us consider:

x1(ε) = −2 + a1ε+ a2ε
2
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What about the other coefficients? Let us assume to have substituted every-
thing; in this case, we have:

() + (I)ε+ (II)ε2 = 0

just like in the previous case, adding the ε2 terms. Performing the very same
calculations, excluding the terms with order greater than 2, it is possible to
find: 

a0 = −2

8a1 + 4 = 0

8a2 − 6a21 − a1 = 0

the first equation is trivial; the second one returns again a1 = −1
2
; the second

one returns (it is possible to prove this):

a2 =
1

8

So, the second order approximation is:

x1(ε) = −2− 1

2
ε+

1

8
ε2

Now, ε was a term identified before; if we substitute its original expression,
which was ε = 0.001, and we compare with the exact solution, we can see if
the second order approximation is satisfactory.

All these calculations concern the solution x1 only! For the solution x2 = 0
(well, this is only a0 = 0, so the zero order approximation only! This is just
to identify it!), it is necessary to re-do similar calculations, and a different
perturbation series, which means different coefficients ai, will be found.

A particular case is, for this equation, the solution relative to x3 = +2;
indeed, by calculating again the perturbation analysis, it is possible to find
that:

a0 = +2 a1 = 0; a2 = 0; ai = 0....

so, only a0 survives; this means that, in this equation and for that particular
solution, the perturbation series returns the exact solution (at the zero order
approximation!); therefore, it is possible to “capture” the exact behavior of
the physical system just by performing this analysis.
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2.1.2 Application to a differential equation

Let us consider a more complicated problem; a second order ordinary differ-
ential equation of the form:

y′′(x) = f(x)y(x)

for special forms of f(x) these equations exhibit closed form solutions; how-
ever, this is not true in every case.

Since what causes troubles in this equation is f(x), we may try to apply
ε in front of it; by this way, if ε = 0, the equation becomes much simpler!

Obviously, a differential equation has to be defined in a domain; this
domain is defined by the boundary conditions of the equation; let us choose,
for this example:

y′(0) = 1; y(0) = 1

Let us write the perturbative series of this problem:

y(x) =
∞∑
n=0

yn(x)εn

yn(x) are functions, but actually in this case they are the expansion coef-
ficients of the perturbation series. Just like in the algebraic equation,
y0(x) is the solution relative to the zero order approximation, y1(x) the solu-
tion relative to the first order approximation (only the ε1 terms), then y2(x)
is relative to ε2, and so on. Just like before, it is necessary to truncate the
expansion to a certain term, substitute it in the original equation, equate the
coefficients of ε0 (constant), of ε, of ε2 to zero (in order to satisfy the left
hand-side term equal to zero in an equation in ε, every coefficient should be
set equal to zero), and then the system is determined.

One slightly different way to proceed is to set y0(0) = 1, y′0(0)?1; by this
way, all the initial conditions are fulfilled with the zero-order terms; let us
say that we are “including” the boundary conditions in the expansion. Then,
∀n > 0, yn(0) = 0, y′n(0) = 0: indeed, the boundary condition is included in
y0 and in y′0, so it should not be introduced in the remaining terms.

Which is the zero order approximation? Well, let us set ε = 0; the
differential equation becomes:

y′′(x) = 0
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its solution is the straight line:

y0(x) = cx+ d

since:

y′(0) = 1 =⇒ c = 1

and:

y0(0) = 1 =⇒ d = 1

so:

y0(x) = x+ 1

Now, it is possible to write the perturbation series representation of the
solution y(x) as:

y(x) =
∞∑
n=0

εnyn(x) = y0(x) +
∞∑
n=1

εnyn(x) = x+ 1 +
∞∑
n=1

εnyn(x)

Let us calculate the first and the second derivatives of this expression:

y′(x) = 1 +
∞∑
n=1

εny′n(x)

y′′(x) =
∞∑
n=1

εny′′n(x)

so, let us substitute this in the differential equation:

∞∑
n=1

εny′′n(x) = εf(x)

[
x+ 1 +

∞∑
n=1

εnyn(x)

]
this can be written in an expanded, explicit way:

εy′′1 + ε2y′′2 + ... = εf(x) [x+ 1] + ε2f(x)y1(x) + ...

so, it is possible to write the following chain of equations:
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y′′1 = f(x)(x+ 1) = f(x)y0(x)

then, it is possible to find the solution plugging in here some approximation:

y′′2 = f(x)y1(x)

so, this means that we can use as a source of the problem the solution of the
previous step; therefore, in general:

y′′n = f(x)yn−1(x)

This approach has been presented on differential equations, but it is exten-
sively used in integral equations; let ϑ̂ be an integral operator applied to a
function u; it is possible to have an operator equation like:

ϑ̂u = ξ̂u+ s

if ξ̂ is an integral operator, we can take an approximation u(0) of u, apply ξ̂
to it, and then:

ϑ̂u(1) = ξ̂u(0) + s

so, we use u(0) as source to find u(1), which is a higher order approximation
of the function; if ξ̂ is an integral operator, the best the integral is estimated,
the best the accuracy of our result will be.

Let us go on with the calculations on the differential equation; let us
integrate y′′1(x):

y′′1(x) = f(x)(x+ 1)

so:

y′1(x
′) =

∫ x′

0

f(x′′)(x′′ + 1) dx′

so, integrating this again:

y1(x) =

∫ x

0

∫ x′

0

f(x′′)(x′′ + 1) dx′′ dx′

Let us remark that these integrals, evaluated in 0, return 0, since y′1(0) = 0
and y1(0) = 0 for hypothesis. We have two integrations; then, every time
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that we have to find another term, we have to do other two integrations;
so, for each higher order approximation, it is necessary to integrate twice a
function; indeed, for instance, it is known that:

y′′2(x) = f(x)y1(x)

so f(x)y1(x) has to be integrated twice, and this may be harder that what
was suggested before for y0(x), which had an easy expression; this depends
on f(x) too, of course.

There are several methods aimed at solving in an approximated way a
differential equation; an example is the Frobenius method, which consists of
finding y as a Taylor series; the problem of this approach is that the Taylor
series is a very good local approximation: it works only in the neighborhood
of the point where the expansion is defined; instead, the perturbative series
approach provide us with the full picture: maybe the approximation is not
very good, but it is equally good in every point of the domain; so, we sacrifice
the local information to obtain a decent approximation in the whole domain.

y(x) =
∞∑
n=0

bnx
n

this is very good in x = 0, but not outside of it, unless a huge number of
terms is calculated.

2.1.3 Setting of a perturbation diffusion problem

Diffusion problems may be studied by means of a perturbation approach. An
example of these problems is:

y′′(x) = −e−xy(x)

this equation is written in the form above, ad we have a certain f(x). This
f(x) is a sort of diffusion coefficient. Further details can be found in
the book of Cranck, Mathematics on Diffusion; this equation, in details,
arises in the study of the conduction of heat in solids.

A perturbation method can be setted using the following idea:

t = 2
√
εe−

x
2

since:
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y(x) =
∞∑
n=0

εnyn(x)

we have:

y′′(x) =
∞∑
n=0

εny′′n(x)

where:

y0 = x+ 1

for the usual boundary conditions. So:

∞∑
n=1

εny′′n(x) = −εe−x
[
∞∑
n=1

εnyn(x) + (x− 1)

]
so, in general, it is possible to find that:

y′′n(x) = −e−xyn−1(x)

so, some kind of iterative method can be applied. The nonlinear term can
be treated for instance expanding it as a Taylor series.

2.2 Regular and singular perturbation meth-

ods - multiple scale problems

The methods based on the use of a perturbation series can be divided in two
classes:

• regular perturbation methods: it gives the exact solution when ε→ 0,
but, for ε 6= 0, the series representation converges, in a non-trivial
(different from a single point) interval, for some values of ε; if this
convergence exists, the perturbation series is said to be regular

• if we have the correct solution to the problem addressed with the per-
turbation series method only for ε = 0, then the perturbation method
is called singular.
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This means that we have two classes of methods but, for the second class,
it is possible to solve the method only in the ε = 0 case; however, many
questions can arise: is it useful to solve singular problems with perturbation
methods? Is there a general way to identify singular problems, just looking at
them? And, is it possible to manipulate a singular problem, to get somehow
a non-singular one?

The solutions to these questions are: multiscale methods: by applying
come scale changes, it is possible to tackle these problems.

Multiscale methods are based on the following idea: we can get a series
representation non, in terms of powers of the parameters, but something else;
indeed, if the problem can be solved in terms of a standard power series of
ε, it means that the problem is regular; if it is not possible, the problem is
singular.

In order to understand all of this, we are going to apply our idea to a
specific problem:

ε2x6 − εx4 − x3 + 8 = 0

Using ε as a parameter of this equation, and x as variable, this is an equation
which admits 6 solutions; therefore, we want to find them.

Let us try to force ε = 0; in this case, the equation becomes:

−x3 + 8 = 0

this equation has 3 roots only, rather than 6; these solutions are:

x1 = 2 x2 = 2ej
2π
3 x3 = 2ej

4π
3

These are three unperturbed roots; we can apply perturbation analysis to
each of them and then find more accurate results. However, this provide us
only with three out of six solutions; we missed three solutions!

What about the other three roots? For a part of the problem, standard
techniques can not be applied, because we can not obtain the full solution
of the problem only with the standard perturbation analysis. This is an
indication of the fact that our problem is singular: since we can not get the
full picture of the problem, using perturbation analysis, because the nature of
the problem changed, well, this problem is probably singular: the application
of ε = 0 caused some sort of degeneration of the problem from a sixth-order
to a third-order problem.
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What happened with the remaining three roots? For ε → 0, what hap-
pens is that three roots are very close to the three numbers that we showed:
x1, x2, x3; the remaining three roots are huge numbers! Very large numbers!

But, how large? Which is the order of magnitude of x such as, for ε very
small, we can obtain a polynomial equal to zero? If we can estimate, for each
of these roots, the order of magnitude of x, we can apply some technique
to transform this problem to another problem, being able to study all six
solutions: this is the scale change.

In order to apply this approach, it is necessary to discuss the relative
weight of the four terms of the equation: we have to study the orders of
magnitude of the various terms; then, the idea may be to take two terms
every time, and assume that they are comparable; if this equation is fulfilled
by this requirement, we are fine.

The first assumption which we will try is:

ε2x6 ∼ εx4

this means that:

x =
1√
ε

so, we are saying that:

x = O(ε−
1
2 )

with this condition, we can say that, substituting the behavior of x6 ∝ ε−6/2:

ε2x6 ∝ ε2ε−3 = ε−1

so:

ε2x6 = O(ε−1)

this term goes as O(ε−1); let us see what happens for other terms:

εx4 = O(εε−2) = O(ε−1)

If x is of the order of magnitude of ε−1/2, we have that ε2x6 and εx4 are both
of order O(ε−1. What about x3 ?

x3 = O(ε−
3
2 )
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so, x3 dominates with respect to ε−1, for small values of ε; therefore, this
term can not equal zero, because no other terms can “compensate” it. This
means that the first assumption is wrong, and we have to try something else.
Indeed, by adding terms of order ε−1, for ε → 0, x3 becomes too large, and
nothing can compensate it.

Another assumption which can be done is:

εx4 ∼ x3

which becomes:

x = O(ε−1)

in this case:

x3 = O(x−3)

but:

ε2x6 = O(ε−6ε2) = O(ε−4)

and:

εx4 = O(εε−4) = O(ε−3)

again, there is a dominant term, alone, which can not be compensated by
any other term.

The third attempt is:

ε2x6 ∼ 8 =⇒ x = O(ε−
1
3 )

indeed, 8 = O(1). So:

εx4 = O(ε−
4
3
+1) = O(ε−

1
3 )

So, this term is dominating, but what about x3 ? Well:

x3 = O(ε−1)

so this is dominating on the previous ones, and it can not be compensated,
since it is alone.

It makes no sense to say that x3 ∼ 8; indeed, in this case, ε plays no role
in our equation.
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Another guess which we can try is:

ε2x6 ∼ x3 =⇒ x = O(ε−
2
3 )

in this case:

x3 = O(ε−2)

then:

8 = O(1)

and:

εx4 = O(ε1−
8
3 ) = O(ε−

5
3 )

The number 5
3

is a little bit less than 2, so, now, the dominating term is
ε−2. This means that the terms that we left out are irrelevant with respect
to the considered ones. So, since now the dominant terms are two, and the
term with lower asymptotic order is alone, we have found a solution: we can
use this to move on! Because, now the dominant term can compensate each
other !!!

The following step is the application of a variable change:

yε−2/3 = x

so, the equation becomes:

ε−2y6 − ε−5/3y4 − ε−2y3 + 8 = 0

which becomes:

y6 − ε
1
3y4 − y3 + 8ε2 = 0

Now, ε = 0 is not destroying the six roots: we have a regular problem.
To sum up, what we done was to “measure00 the order of magnitude,

and then “change the scale”. Indeed, for ε = 0, we have:

y6 − y3 = 0

so:

y3(y3 − 1) = 0

18



so:

y = 0

is a solution three times: these are the “small” solutions which we have found
without applying the multiscale method. Then:

y = 1, y = ej
2
3
π, y = ej

4
3
π

are the remaining three solutions which we were trying to find; to these three
solutions we can apply our perturbation series, or something similar; indeed:

x(ε) =
∞∑
n=0

an(ε
1
3 )n

this is no longer a power series; this, because this is a singular perturbation
problem; in this case, it is not possible to represent the solutions as power
series. Indeed, the smallest power of ε that we have in our problem is ε1/3,
and so the series has to start with it.

2.2.1 Example: differential equation

Let us consider a differential equation:
εy′′ − y′ = 0

y(0) = 0

y(1) = 1

If ε → 0, the differential problem degenerates in an algebraic problem; we
can suppose that it is not possible to write y(x) as a perturbation series:

y(x) 6=
∞∑
n=0

yn(x)εn

So, which is the exact solution? Which peturbation analysis can provide us
with a correct solution? Trying to put ε = 0, the equation becomes:

y′(x) = 0
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which is a constant; but, this constant should equal zero for x = 0 and 1 for
x = 1; this has no sense. This means that this solution can not even satisfy
the two boundary conditions.

Using the exact analysis with the characteristic polynomial, we have:

ελ2 − λ = 0

so:

(ελ− 1)λ = 0

which is:

λ = 0

λ =
1

ε

This gives two exponentials:

y(x) = A+ be
x
ε

Which is:

y(0) = 0 =⇒ A+B = 0 =⇒ A = −B

so:

y(x) = −B +Be
1
ε = 1

so:

B(e
1
ε − 1) =⇒ B =

1

e
1
ε − 1

so, finally:

y(x) =
1− e

x
ε

1− e
1
ε

If we draw this curve for decreasing values of ε, it tends to a constant almost
everywhere, and it jumps to 1 in a very small interval. This behavior is
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called “boundary layer”: everything happens in the region where the function
variates.

In order to use the two-scales method, we need asymptotic matching:
from the boundary layer on, we need one scale; then, for the other one,
another; then, the two solutions have to be matched.

2.2.2 Perturbations on differential equations defined
on an infinite interval

Let us consider, now, the following problem:
y′′ + (1− εx)y = 0

y(0) = 1

y′(0) = 0

If this problem is given in a [0, L] interval, this is a regular problem, and so
in order to solve it it is possible to apply the standard perturbation theory.
However, if the interval in which this problem has to be solved is [0,∞), it
is not possible to use standard methods.

In perturbation analysis, ε can be assumed to be a small number; there-
fore, if we realize that, we can suppose that ε → 0, and so the equation
becomes:

y′′0 = −y0
which is easy to be solved: this is the zero order approximation of the solu-
tion. But, to obtain further terms, we should have something like:

y(x) ' y0(x) + εy1(x)

we obtained y0, but how can we obtain y1?
An idea may be to take the previous expression of y(x) and to differentiate

it twice, then to substitute it in the differential equation:

y′(x) = y′0(x) + εy′1(x)

and:

y′′(x) = y′′0(x) + εy′′1(x)
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so, by substituting:

y′′0 + εy′′1 + y0 + εy1 − εx(y0 + εy1) = 0

by setting y′′0 + y = 0, thing which is valid because y′′0 is a solution of that
equation, the problem becomes corresponding to the first order coefficient in
ε, equal to zero: it is simply necessary to equate the coefficient of ε to zero;
so:

y′′1 + y1 − xy0 = 0

There is another philosophy to solve problems of this kind: let us assume to
have a differential equation like:

y′′ + (1− x)y = 0

experience shows us that x is damaging us: it is what makes this problem
hard! Therefore, we can force the presence of ε as a factor of x, and then
at the end of the calculations set ε = 1. This allow us to use what we just
learned: the 0-order solution is again y′′0 + y0 = 0. Since y0 is supposed to be
an approximation of the solution, it is possible to compute the “complicated
part” of the equation using the approximation:

y′′ + y − εxy = 0

substituting:

y′′1 + y1 − εxy0 = 0

This problem has a peculiarity: y0 is known, therefore it is a source of the
problem.

These are the two ways of reaching this point; probabily the first one is
easier.

Let us complete the solution: relatively to the differential equation in y0,
the characteristic polynomial is:

λ2 + 1 = 0

therefore:

y0(x) = A cosx+B sinx
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since y(0) = 1, we have:

A+ 0 = 1 =⇒ A = 1

then, since:

y′0(0) = 1 =⇒ −A× 0 +B × 1 = 0 =⇒ B = 0

so

y0(x) = cos x

Now, let us write the perturbation series:

y(x) =
∞∑
n=0

yn(x)εn

so:

y′′(x) =
∞∑
n=0

y′′n(x)εn

so:

∞∑
n=0

y′′n(x)εn +
∞∑
n=0

yn(x)ε− x
∞∑
n=0

yn(x)εn+1 = 0

by forcing coefficients of the same order of ε to equal zero, we obtain the
following equation:

y′′n(x) + yn(x)− xyn−1(x) = 0

since we solved the case n = 0, it is possible to substitute it and to obtain
the n = 1 equation:

y′′1(x) + y1(x)− x cosx = 0

This differential equation has a homogeneous part of the solution, which is
related to the own response of the system, to the kernel of the differential
operator, and then, added to that, the response of the source. We can find
that:
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y1(x) =
1

4
x2 sinx+

1

4
x cosx− 1

4
sinx

and then, we can apply the same for y2:

y′′2 + y2 − xy2 = 0

and it is possible to prove that:

y2(x) = − 1

32
x4 cosx+

5

48
x3 sinx+

7

16
x2 cosx− 7

16
x sinx

these proofs are done in the homeworks.
The solution which we showed works only for small values of x: indeed,

even if ε is very small, if x becomes too large, it is not possible to say that
xε is still small! For large values of x, there is no way to have a convergent
perturbation series!

So, how can we tackle this problem using perturbation methods? Well,
the solution, is to use a multi-scale approach; indeed, if x ∼ 1

ε
, this problem

becomes singular, and so it is necessary to develop, in the large scale, another
perturbation method, which is able to work also for the unbounded domain.

2.2.3 Application example: Schrödiner equation

Let us consider the 1d Schrödinger equation, in planar geometry:[
− d

dx2
+ u(x)− E

]
y(x) = 0

the derivative is said to be “diffusion operator”; y(x) is connected to the
probability to find a particle between the points x and x+ dx.

The potential u is what bounds the possibility of motion of the particle;
therefore, if u(x) is very big at infinity, the particle can not escape; therefore,
we want:

lim
|x|→∞

u(x)→ +∞

Therefore:

lim
|x|→∞

y(x) = 0
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the particle can not escape towards infinite.
Another condition which may be required is the regularity of the solution,

which means a certain number of finite derivatives.
A remark: this is an homogeneous problem, because no forcing term is

present; the objective of this problem is to determine E, which is the set of
possible energy levels of the particle. This is a Sturm-Liouville problem, so
the theory behind it is very known. However, if u has complicated expres-
sions, the problem can not be solved analytically. E is the eigenvalue of the
problem.

Let us try to apply a perturbation approach: since the complications of
the problem come from u(x), the obvious suggestion is to put ε in front of it;
however, if ε→ 0 in this case, the problem becomes the problem of a particle
which is no longer moving in an energy field. So, probably, this approach is
too hardcore.

But, let us assume that u(x) can be divided in two parts:

u(x) = v(x) + w(x)

where v(x) is an “easy” term, and w(x) a “hard” term, which complicates
the expressions; with only v(x), we assume to have a problem which can be
solved analytically. So, it is possible to consider:

v(x) + w(x) −→ v(x) + εw(x)

and so, the problem becomes:[
− d

dx2
+ v(x) + εw(x)− E

]
y(x) = 0

Now, let us consider ε = 0, and let us choose, for instance:

v(x) =
x2

4
this is just an example of problem, just to have something which can be
discussed. The zero order equation is:

−d2y

dx2
+
x2

4
y − Ey = 0

This is an eigenvalue equation; in Abramowitz it is possible to find the so-
lution for the equation: the eigenvalue E assumes only a discrete number of
values identified by the index m:
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Em = m+
1

2
where m is an integer number. The fact that this is finite is the starting
point of quantum mechanics, for which the energy levels which a particle can
assume are quantized.

Again from Abramowitz it is possible to see that, for this specific expres-
sion of the easy part of the potential v(x):

ym(x) = e−
x2

4 Hm(x)

where ym(x) are the eigenfunctions of the problem; Hm are the Hermite
polynomials. For instance, H0(x) = 1, H1(x) = x, H2(x) = x2 − 1.

This is only a zero order solution, so all these eigenvalues and eigenfunc-
tions are an approximation of the actual problem, because we have only kept
into account v(x), but not w(x) !

Therefore, in order to improve the approximation of each m-th eigenvalue
and eigenfunction, let us write, for a specific eigenvalue E, its perturbation
series:

E =
∞∑
n=0

Enε
n

the solution of the problem, i.e. the eigenfunction, is:

y(x) =
∞∑
n=0

yn(x)εn

(this is the eigenfunction associated to the eigenvalue E). So, substituting
in the original equation:

−
∞∑
n=0

y′′n(x)εn+v(x)
∞∑
n=0

yn(x)εnw(x)
∞∑
n=0

yn(x)εn+1−
∞∑
n=0

Enε
n

∞∑
n=0

yn(x)εn = 0

As usual, let us satisfy this equation by equating to 0 the coefficient of the
n-th power of ε:

−y′′n(x)v(x)yn(x) + w(x)yn−1(x)−
n∑
j=1

Ejyn−j(x)− E0yn = 0
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where the last term comes from the Cauchy theorem for the product of two
series.

Owing to the presence of the potential, we require that yn, for big values
of x, approach 0; keeping into account this condition too, this is the set
of equations that we have to solve; the unknown of the problem are the
coefficients of the perturbation series, yn; the highest order in the series is
n − 1, since the summations are calculated starting from j = 1; finally, we
derived a connection between all the terms prior to the n-th one, from y0 to
yn−1.

The objective of all these calculations is to find the eigenvalues and eigen-
vectors for the n-th order; indeed, up to the n − 1th, everything is known.
So:

−y′′n + v(x)yn(x)− E0yn(x) = −w(x)yn−1(x) +
n∑
j=1

Ejyn−j(x)

This is a non-homogeneous problem, because it has a source term; this prob-
lem can be solved by means of the method of order reduction: defining
yn(x) as a function of y0(x) times a certain new unknown Fn(x), we can
write:

fn(x) = y0(x)Fn(x)

This approach is absolutely general, and it can also be applied to other
situations or equations. Now, we can find its derivatives, using Leibnitz’s
rule:

y′n(x) = y′0(x)Fn(x) + y0(x)F ′n(x)

and:

y′′n(x) = y′′0(x)Fn(x) + y′0(x)F ′n(x) + y′0(x)F ′n(x) + y0(x)F ′′n (x) =

= y′′0(x)Fn(x) + 2y′0(x)F ′n(x) + y0(x)F ′′n (x)

The calculations of these derivatives is useful, to substitute these expressions
in the previous equation:
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−y′′0Fn − 2y′0F
′
n − y0F ′′n + v(x)y0Fn − E0y0Fn = −wy0Fn−1 +

n∑
j=1

Ejy0Fn−j

This, simplifies our problem; indeed, now we have, collecting all the terms in
Fn:

Fn(−y′′0 + v(x)y0 − E0y0)

but, since y0 is the solution of the equation, what is inside the parentheses
equals zero. For what concern the remaining terms, we have, changing signs
at both terms:

2y′0F
′
n + y0F

′′
n = wy0Fn−1 −

n∑
j=1

Ejy0Fn−j

let us multiply both members times y0:

y0 (2y′0F
′
n + y0F

′′
n ) = y0

(
wy0Fn−1 −

n∑
j=1

Ejy0Fn−j

)
but, it is possible to see that:

y0 (2y′0F
′
n + y0F

′′
n ) =

d

dx

(
y20F

′
n

)
so, we obtained:

d

dx

(
y20F

′
n

)
= w(x)y20(x)Fn−1(x)−

n∑
j=1

Ejy
2
0(x)Fn−j(x)

Observing that:

yn = Fny0 =⇒ Fn =
yn
y0

so, it is possible to write:

y20(x)
d

dx

(
yn
y0

)
= y20

(
y′n
y0
− y′0
y20
yn

)
= y0y

′
n − y′0yn
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but, since when |x| → ∞ goes to zero, and y′n, y′0 are finite (we ask for
regularity in the solution!),

lim
|x|→∞

y20F
′
n = 0

Now, let us integrate the equation from −∞ to +∞; this improper integral
equals zero, because it equals the difference between the two limits of the
integrand function in ±∞, which are both zero, as we have just proved. So:∫ +∞

−∞

d

dx

(
y20F

′
n

)
dx =

(
y20F

′
n

)∣∣+∞
−∞ = 0

So, since integration should be applied also the right term, we have just
shown that: ∫ +∞

−∞
y20(x)

[
w(x)Fn−1(x)−

n∑
j=1

EjFn−j(x)

]
dx = 0

From this integral, let us now separate the terms of order n from the re-
maining ones; the only part where the n-th term appears is the sum, so, this
becomes:

∫ +∞

−∞
y20(x)

[
w(x)Fn−1(x)−

n−1∑
j=1

EjFn−j(x)

]
dx+

∫ ∞
−∞

y0EnF0(x) dx = 0

but F0(x) = y0(x)
y0(x)

= 1; so:∫ ∞
−∞

y0EnF0(x) dx = En

∫ +∞

−∞
y20(x) dx

So, we just proved that:

En

∫ +∞

−∞
y20(x) dx =

∫ +∞

−∞
y20(x)

[
w(x)Fn−1(x)−

n−1∑
j=1

EjFn−j(x)

]
dx

which means that:
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En =

∫ +∞
−∞ y20(x)

[
w(x)Fn−1(x)−

∑n−1
j=1 EjFn−j(x)

]
dx∫ +∞

−∞ y20(x) dx

Now, some additional simplification can be introduce; indeed:

Fn−1 =
yn−1
y0

so, simplifying y0, we obtain:

En =

∫ +∞
−∞ y0(x)

[
w(x)yn−1(x)−

∑n−1
j=1 Ejyn−j(x)

]
dx∫ +∞

−∞ y20(x) dx

This formula is very interesting; indeed, in it it is possible to read that to
compute the n-th order approximation of the eigenvalue E, En, it is just
necessary to know the previous coefficients of the approximation (up to the
n − 1 term), and of the eigenfunctions. This integral can not be calculated
analytically, but in most cases it can be solved by means of a quadrature
formula.

Perturbation of the eigenfunctions

We are going to try to find a similar formulation for what concern the el-
ements of the perturbation series of the eigenfunctions. Going back, we
proved:

d

dx

[
y20(x)F ′n(x)

]
= y20(x)

[
w(x)Fn−1(x)−

n∑
j=1

EjFn−j(x)

]
instead of integrating in the entire domain, let us integrate from −∞ to a
certain parameter t; the result is:

y20(t)F ′n(t)−y20(−infty)F ′n(−∞) =

∫ t

−∞
y20(s)

[
w(s)Fn−1(s)−

n∑
j=1

EjFn−j(s)

]
ds

but y20(−infty) = 0 (this is a limit!). So, it is possible to isolate Fn(x) and
to divide both terms times y20(x), then to integrate, obtaining:
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Fn(x)

∫ x

a

1

y20(t)

∫ t

−∞
y0(s)

[
w(s)yn−1(s)−

n∑
j=1

yn−j(s)

]
ds dt

(this, by doing the same step which has been done at the end of the previ-
ous subsection). In this equation, everything is completely defined, but the
evaluation of this expression can be very complicated.
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Chapter 3

Perturbation theory of integral
quantities

One important point, when applying mathematical methods to physical prob-
lems, is to identify which are the important parameters: many times, having
too information can be a problem, because information has to be handled,
processed, in order to derive what is really needed to solve the physical prob-
lem. Integral quantities are very important in physics, because they provide
the researcher with a summary of the information: by integrating we lose
local information, but we have less quantities to study: it is like considering
an average, instead of a function.

3.1 Mathematical fundamentals

In this section we will set the mathematical notation of this chapter1. We
will identify with ϑ̂ our operators; as operators, we usually mean integral
operators, as the name of the chapter is suggesting. ϑ̂ has a domain, which
is a set of functions which can be applied to it; when this is possible, we
identify the application of ϑ̂ to a certain set of functions f belonging to its
domain with the notation

ϑ̂f

1A reference for operator theory oriented to perturbation theory is: Kato T. - Pertur-
bation Theory for Linear Operators
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Now, let us consider a ∈ f , where a is a single function; let b be another
function, also of another space; it is possible to define (b, a) as the inner
product of the two functions. In order to get some confidence with the
concept of inner product, let us consider an example related to R2; to this
aim, let us consider the following examples:

u = u1ê1 + u2ê2 direct vector

v = v1ê1 + v2ê2 adjoint vector

where ê1 and ê2 are the unit vectors in which the two vectors are represented,
and (u1, u2), (v1, v2) are the components of the vector of the direct space and
of the adjoint space respectively. An example of inner product between these
two vectors, (v , u) can be defined as:

(v , u) , u1v1 + u2v2

In other words, the inner product, starting from an element (a function) of
the direct space, and from one of the adjoint space, produces a number.

Now, let us assume that the application of the operator ϑ̂ to a function
belonging to the functional space f maps the function in the space f itself.
Then, let us consider another space, g; so, it may be interesting to find:

(g, ϑ̂f)

Conversely, it is also possible, give ϑ̂†, operator which can be applied to
functions belonging to the space g, to define:

(ϑ̂†g, f)

These two situations, right now, are separated. But, if:

(ϑ̂†g, f) = (g, ϑ̂f)

so, ϑ̂† is said to be te adjoint operator of ϑ̂.
In other words, given a function belonging to the space g, and one to

the space f , it is possible to move the operator (doing the adjoint) without
changing the result.

33



3.2 Eigenvalue problems

Given ϑ̂ any linear, differential/integral operator, x an element of the phase
space (it may be a vector):

ϑ̂y(x)− λy(x) = 0

in this case, λ is the eigenvalue of the problem. In these notes we will consider
λ ∈ R; we will focus on one particular value of λ, and, since it is an eigenvalue
for assumption, it will belong to the discrete part of the spectrum. Finally,
let us consider:

ϑ̂ = ϑ̂0 + δϑ̂

the operator ϑ̂ consists of two parts: ϑ̂0 is an unperturbed operator, while
δϑ̂ is the perturbation from ϑ̂0. Since this is a perturbation, we may apply
perturbation analysis to this problem, and assume that:

δϑ̂ = εΦ̂

where Φ̂ is another operator. In order to obtain the first-order approximation
of the perturbed eigenvalue, it is necessary to solve the following problem:

(ϑ̂0 + εΦ̂)y(x)− λy(x) = 0

If ε = 0 we have the unperturbed problem, so the one involving only the
unperturbed operator ϑ̂0:

ϑ̂0y0(x)− λ0y0(x) = 0

let us assume that this problem can be solved, and let us assume to know the
solution y0(x) and λ0. Now, we want to obtain a more accurate approxima-
tion of the eigenvalue, so λ1; to this aim, it is possible to apply a perturbation
approach, and to write the perturbation series, truncated to the first power
in ε, for both the eigenvalue and the eigenfunction:

y(x) ' y0(x) + εy1(x) y(x) ' λ0 + ελ1

therefore, by substituting this in the equation:
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(ϑ̂0 + εΦ̂)(y0 + εy1)− (λ0 + ελ1)(y0 + εy1) = 0

now, we expand this equation:

ϑ̂0y0 + εϑ̂0y1 + εΦ̂y0+ 6 ε2Φ̂y1 − λ0y0 − λ0εy1 − ελ1y0− 6 ε2λ1y1 = 0

now, grouping as usual all the 0-order and 1-order terms, it is possible to
define two equations; for zero order terms:

ϑ̂0y0 − λ0y0 = 0

this is nothing new: this is the zero order problem, and this is assumed
to be known. Therefore, it can be canceled from the equation. Then, the
ε2 terms are neglected, because they are not important in the first order
approximation; finally, what remains is the following equation:

ε
[
ϑ̂0y1 + Φ̂y0 − λ0y1 − λ1y0

]
= 0

so, what is inside the parentheses should be equated to zero. The interesting
thing of this equation is the fact that Φ̂ is applied to y0, which is known;
therefore, since the “bad” operator, the perturbation, is applied only to y0,
well, this is simply a source of the operation equation.

There are cases in which we are not interested in knowing y1, so in im-
proving the approximation for the eigenfunction, but only in improving the
accuracy with which we know the eigenvalue. The interesting thing is the
fact that it is possible to obtain λ1 without evaluating y1. The idea is: first,
we have to multiply this equation times something; then, y1 terms become
in some sense orthogonal to the multiplication terms, and so we eliminate
its presence from the equation. Now the question is: on which function is
it possible to perform a projection of this equation in order to get rid of
the y1 contribution? Well, the answer is quite easy: if we have solved the
unperturbed adjoint problem:

ϑ̂†0y
†
0(x)− λ†0y

†
0(x) = 0

where it can be shown by means of a general theorem that:

λ†0 = λ∗0
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so, the eigenvalue of the adjoint problem equals the complex conjugate of the
eigenvalue of the direct problem. Assuming that also the adjoint problem is
solved, the projection is performed by means of an inner product, which is
realized by means of an integral. Since we are going to consider only integrals
from now on, we are changing the local equation in an integral equation;
therefore, we are forcing to equal zero not the local equation, in strong form,
but only a weighted, averaged quantity; the importance of our quantities is
weighted with y†0: (

y†0, ϑ̂0y1 + Φ̂y0 − λ0y1 − λ1y0
)

= 0

exploiting the linearity of the inner product it is possible to obtain:

(y†0, ϑ̂0y1) + (y†0, Φ̂y0)− λ0(y
†
0, y1)− λ1(y

†
0, y0) = 0

let us focus on the following terms:

(y†0, ϑ̂0y1)− λ0(y†0, y1)

it is possible to move the operator from the first term, adjoining it:

(y†0, ϑ̂0y1) = (ϑ̂†0y
†
0, y1)

so, we obtain:

(ϑ̂†0y
†
0, y1)− λ0(y

†
0, y1)

using linearity:

(ϑ̂†0y
†
0 − λ0y

†
0, y1)

but:

ϑ̂†0y
†
0 − λ0y

†
0 = 0

because this is the adjoint eigenvalue problem relative to the zero order ap-
proximation! So, everything is 0, and the equation reduces to:

(y†0, Φ̂y0)− λ1(y
†
0, y0) = 0

which can be written as:
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λ1 =
(y†0, Φ̂y0)

(y†0, y0)

This means that it is possible to solve only the unperturbed problem and
the adjoint unperturbed problem, in order to refine the approximation of the
eigenvalue of the problem perturbed by Φ̂. This, is done just by means of
easy integrations.

Many times it is enough to have a first order approximation; however,
there are also situations in which it is not possible to stop at the first term.
An example where this happens is nuclear reactors: when we introduce
the control rods, which are neutron absorbers, we reduce the chain reaction.
Control rods represent a perturbation of the operator, where the operator
is the “chain reaction”. If we go only to the first order, we compute the
capability to change the multiplication of neutrons keeping into account the
presence of the control rod, starting from an unperturbed system; however,
since control rods represent a perturbation to this system, we can not start
from an unperturbed situation to model this! The point is: the first order
approximation, as we just proved, is not taking into account the presence
of the perturbation itself and, sometimes, this can not be done, because, as
in the nuclear engineering case study, the number of neutrons can not be
calculated correctly.

3.3 Perturbation of integral quantities

Now we are going to focus on the perturbation of integral quantities, but no
longer on eigenvalues. Let us consider a problem like:

ϑ̂y(x) + S(x) = 0

This may be an integral or a differential equation, and y(x) is the solution
of this operator equation; however, it is possible to be interested not in y for
each point x of the phase state, but on some functional related to it; therefore,
the problem which we are addressing is the inversion of the operator ϑ̂, but
in some “global” sense. For instance, we may be interested in an integral
quantity, like:

I = (w, y)
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where w is something that we want to observe; for instance, it may be the
total number of particles, or their importance in the reaction; w is called the
“detector” of our problem, because it selects, it weights, among the values of
y.

Also in this case it is possible to have an operator ϑ̂ which equals some
unperturbed operator, plus a perturbation, just like in the eigenvalues case
studied in the previous section:

ϑ̂ = ϑ̂0 + δϑ̂ = ϑ̂0 + εΦ̂

just like in the previous section, we will focus only on the first order approx-
imation of the perturbation. Since in this case the only thing which we have
is y, we are going to perform our perturbation analysis on y only:

y(x) = y0(x) + εy1(x)

The problem without perturbation is:

ϑ̂0y0(x) + S(x) = 0

we assume that this problem can be somehow solved. Then, the first order
approximation of the problem is, substituting the perturbation series inside
the equation:

(ϑ̂0 + εΦ̂)(y0 + εy1) + S = 0

Now, our objective is to calculate δI, not δy; therefore, let us keep into
account this objective while proceeding through the following steps. Just
like in the previous section, the first step is the expansion of the previous
equation:

ϑ̂0y0 + εϑ̂0y1 + εΦ̂y0+ 6 ε2y1 + S = 0

it is possible once again to remove the terms in ε2, and the zero order problem;
therefore, the equation becomes:

ε
[
ϑ̂0y1 + Φ̂y0

]
= 0

so, to satisfy this problem ∀ε, the equation is:

ϑ̂0y1 + Φ̂y0
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since y0 is known (we assume to have solved the zero order problem), this
can be seen once again as an operator equation with a source.

Before going on with the projection, it is still possible to define, for the
zero order problem of this situation, another zero order adjoint problem as:

ϑ̂†0y
†
0 + S† = 0

A remark: since we have a source, we are not discussing eigenvalue problems;
indeed, there is a theorem which suggests that, in this case, the homogeneous
adjoint problem may have no solution; therefore, we added an adjoint source.
As adjoint source, it is possible to choose the detector w:

ϑ̂†0y
†
0 + w = 0

indeed, by this way, we are obtaining the same “miracle” that we obtained
before; if we choose the detector, we obtain:

(y†0, ϑ̂0y1) + (y†0, Φ̂y0) = 0

where the second term is known; therefore:

(y†0, ϑ̂0y1) = −(y†0, Φ̂y0)

but, since

ϑ̂†0y
†
0 = −w

we can write:

(y†0, ϑ̂0y1) = (ϑ̂†0y
†
0, y1) = (−w, y1)

so, substituting:

(−w, y1) + (y†0, Φ̂y0) = 0

therefore:

(w, y1) = (y†0, Φ̂y0)

where the right-hand side member is known. Now, since:

I = (w, y0 + εy1) = (w, y0) + ε(w, y1) = I0 + εδI1
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we have that:

δI1 = (w, y1) = (y†0, Φ̂y0)

and, just by solving the zero order problem and the adjoint problem, it is
possible to obtain also the first order approximation of the functional.

A remark: this is true only if we keep always the same detector; if we
change the detector, we change the functional, and so for different detectors,
it is always necessary to solve a new adjoint problem.

As usual, it is possible to discuss this result. When is the first order
analysis sufficient to have satisfactory results? Well, it is possible to remove
high order terms if the perturbation operator Φ̂ has a small norm compared
to the unperturbed operator:∣∣∣∣∣∣Φ̂∣∣∣∣∣∣∣∣∣∣∣∣ϑ̂0

∣∣∣∣∣∣ should be small

What is limiting the validity of our perturbation analysis is the norm of the
operators.

3.4 Notes on sensitivity

An exercise which can be done at this point is, given any 2 × 2 matrix, for
instance with real eigenvalues, to apply perturbation analysis to the pertur-
bations of this matrix, and calculate how eigenvalues are perturbated by the
perturbation of the operator; in this case:

ϑ̂0 =

[
a11 a12
a21 a22

]
then, let Φ̂ be a perturbation matrix:

Φ̂ =

[
δa11 δa12
δa21 δa22

]
for instance, given λ1 the first eigenvalue of the operator ϑ̂0, it is possible
to estimate its sensitivity to a11, by defining a perturbation operator acting
only on a11:
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Φ̂11 =

[
δa11 0

0 0

]
if δa11 = 1%, it is possible to evaluate Sλ1a11 , which is the sensitivity of λ1 on
a variation of a11, as:

Sλ1a11 =
δλ1
δa11

Sensitivity analysis is useful because, in general, a problem is defined by a
certain number of parameters; in this case we have the operator ϑ̂0 which has
4 parameters, which are the elements of the matrix representing the operator.
Different parameters of the operator, of the model, produce different results.
Through perturbation theory it is possible to estimate the perturbation on
the result starting from perturbations of the parameters. In general, it is
possible to defined sensitivity of the j-th output of our model rj on the i-th
parameter of the model pi as:

Srjpi =
δrj
δpi

But it is possible to be interested in relative values:

Sij =

δrj
rj

δpi
pi

in this case, the perturbations have been normalized to the nominal values;
since we have the indices j and i, this constitutes a matrix, which quantifies
the effect of the i-th parameter on the j-th result. For instance, in the case
study, we have two outputs, which are the eigenvalues λ1 and λ2, and four
inputs, which are the matrix elements; therefore, the sensitivity matrix will
be a matrix with two rows (one per each output) and four columns (one for
each parameter):

S =

[
Sr1p1 Sr1p2 Sr1p3 Sr1p4
Sr2p1 Sr2p2 Sr2p3 Sr2p4

]
=

[
Sλ1a11 Sλ1a12 Sλ1a21 Sλ1a22
Sλ2a11 Sλ2a12 Sλ2a21 Sλ2a22

]
indeed, in our case, r1 = λ1, r2 = λ2, p1 = a11, p2 = a12, p3 = a21, p4 = a22.
Let us remark that, in general, sensitivity matrices are not square matrices.
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Chapter 4

Asymptotic matching

The objective of this chapter is to solve differential equations in non-homogeneous
problems1.

The first problem is the fact that the coefficients depend on the indepen-
dent variable of the problem; therefore, the differential equation is something
like:

f(y′′, y′, x) = 0

where the coefficients are depending on x too. An example of these differen-
tial equations is:

y′′ +
√
xy′ + 2x = 0

in this equation,
√
x is a coefficient, and 2x is the source of the problem. In

this case the coefficient is varying with continuity, but there are cases in which
the coefficient of the differential equation is piecewise constant, therefore it
has an abrupt variation in one point, and then inside some intervals it is
constant. In this situation, in each part of the domain where the coefficient
is constant, the differential equation can be solved as standard ODE with
constant coefficients.

The problem of this approach is the fact that we are solving two problems,
solved in two subintervals [a, c], and [b, c], are separated: nothing is relating
them, and this is wrong, since the differential equation is solved in the entire
domain [a, b]. Therefore, our objective is to force continuity of the solution in

1As a reference for the differential equations subject, the “‘Tricomi - Differential Equa-
tions“ (Dover) book is good.
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the discontinuity point: we want to match the two solutions in the common
point between the two adjacent intervals. This procedure is called point
matching: we have to match the solutions in a single point.

4.1 Point matching example

An easy example of what has been stated in the previous equation is:

y′′(x)− y(x) = e−|x|

in this example, only the source has a break in x = 0. If we want to study
this problem ∀x ∈ R, it is necessary to separate it in two subproblems:{

x ≥ 0 y′′ − y = e−x

x ≤ 0 y′′ − y = ex

The first step, valid for both these equations, is the solution of the homoge-
neous equation:

y′′h − yh = 0

using the usual ODE theory:

yh(x) = aex + be−x

If we want to enforce regularity,

lim
|x|→∞

yh(x) = 0

if we focus on x→ −∞, we have b = 0; therefore:

yh(x) = aex

The homogeneous solution is resonant to the source, therefore we multiply
the source times x, to define the form of the particular solution, in order to
eliminate the dependence (resonance) with the source:

yp(x) = Kxex

So, let us calculate the derivatives of this expression:
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y′p(x) = Kex +Kxex = Kex(x+ 1)

and:

y′′p(x) = Kex +Kex(x+ 1) = Kex(x+ 2)

Since:

y′′p(x)− yp(x) = ex

we have:

Kex(x+ 2)−Kex = ex =⇒ 2K = 1 =⇒ K =
1

2

Therefore:

yp(x) =
1

2
xex

and, finally:

y(x) = yh(x) + yp(x) = aex +
1

2
xex

It is possible to repeat very similar steps for the x ≥ 0 case, obtaining:

y(x) = be−x − 1

2
xe−x

Up to this point, the two solutions are disjoint; but there are still the a
and b parameters, which are degrees of freedom of our problem; in order to
complete the problem, it is necessary to patch the two solutions. Since y(x)
comes from equations with a physical meaning, y(x) has a physical mean-
ing too: therefore the conditions at the common point may be continuity,
differentiability or whatever is driven by the physics of the problem. Let us
require, for this specific example, the continuity of both the function and its
first derivative: {

y(0−) = y(0+)

y′(0−) = y′(0+)

If we apply these conditions, we obtain:
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a = b = −1

2

The operation which we have just performed is a matching. The idea of
matching is: since in part of the domain we can apply a certain method
of solution of the differential equation, for instance a perturbation analysis,
and in another part of the domain another method, for instance a multi-scale
method, since the differential equation is defined on a hemi-infinite domain,
it is possible to join, to match the solutions obtained with two different
methods.

Up to this point, we were discussing point matching, i.e. matching
the two solutions in a single point. Now, let us consider, for instance, a
differential equation defined within an interval [a, b]; let us consider a ≤
b′,≤ a′ ≤ b; then, let us assume that, for this particular problem, we can
apply a certain method in a region [a, a′], for instance perturbation analysis;
instead, on [b, b′], maybe it is possible to provide an analytical solution to the
differential equation. It is possible that [b′, a′] is an interval (if b′ 6= a′), so in
this case it is necessary to match functions in an entire interval, instead that
on a single point; this is a generalization of what we have discussed in point
matching: indeed, point matching is a sort of degeneration of what happens
on an interval.

Matching two solutions on an interval can be useful also under another
point of view; indeed, considering for instance a transport problem, close
to the source it is necessary to use a complex transport model to take into
account every effect while, far from the source, it is possible to reduce the
transport model to a diffusion model, which is easier to handle. This is the
basic idea behind hybrid methods.

4.2 Reference solution for the asymptotic match-

ing solution

In order to explain the idea of asymptotic matching, it will be applied di-
rectly to a differential problem; therefore, we are going to solve the following
differential problem:
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 y′(x) +

(
εx2 + 1 +

1

x2

)
y(x) = 0, x ∈ [1,+∞)

y(1) = 1

In this section we are going to solve this equation analytically, since it is
possible. This will be useful as reference for the results which will be obtained
applying the asymptotic matching method. First, it is possible to write this
equation as:

dy

dx
+

(
εx2 + 1 +

1

x2

)
y(x) = 0

then, it is possible to apply the following trick:

dy

y
= −

(
εx2 + 1 +

1

x2

)
dx

Then, it is possible to apply the operator of indefinite integration to both
these terms: ∫

dy

y
= −

∫ (
εx2 + 1 +

1

x2

)
dx

which is:

log y = C − εx
3

3
− x+

1

x
where C is an integration constant; now, inverting the logarithm, it is possible
to obtain:

y(x) = Ke−ε
x3

3
−x+ 1

x

where

K = eC

Now, it is possible to apply the initial condition:

y(1) = Ke−
ε
3 = 1 =⇒ K = e

ε
3

Therefore, the reference solution which we were looking for is:

y(x) = e
ε
3 e−ε

x3

3
−x+ 1

x
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4.3 Discussion of asymptotic matching

Let us start again from the differential equation, which will be solved by
means of different methods:

y′(x) +

(
εx2 + 1 +

1

x2

)
y(x) = 0

The presence of ε is suggesting us to try a perturbation analysis; to this aim,
let us call yL the unknown of the differential equation with ε→ 0 (L means
Left, as we will discuss):

y′L +

(
1 +

1

x2

)
yL = 0

To obtain this equation it is necessary to have small values of εx2; indeed,
if ε → 0 but x is very large, this approximation does not make any sense.
Therefore, applying this approximation, which leads to the perturbation ap-
proach, is correct only for low values of x, which are the left side of the
interval; this provides us with an explanation for the name of the solution.
Then, this differential equation should be solved with yL(1) = 1.

However, this approximation can not be applied for big values of x; in-
stead, what is happening for large x is that the 1

x2
term becomes irrelevant,

therefore:

εx2 � 1

x2

so, it is possible to write the right equation:

y′R + (εx2 + 1)yR = 0

In this case, since the equation is valid only for the right part of the interval,
the left boundary condition should not be enforced.

We splitted the problem in two sub-problems, and, independently, we
obtained two solutions, valid for each sub-problem. However, in the same
interval, the two solutions have to be very close; our objective is to identify
the interval where the two solutions have to be matched; this is asymptotic
matching.

An engineering case study where this situation can occur can be found
again in nuclear engineering; for instance, neutrons can be very fast, also at
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20 ◦C, as it can be seen from Boltzmann equation: at these temperatures,
neutrons may have a speed of the order of magnitude of 200 m/s, and the
size of a nuclear reactor may be 2 meters; therefore, the lifetime of a neutron
may be there short, since, after having traveled for a certain path, they can
be absorbed or thrown away; the average lifetime of these neutrons may be
something like τ ∼ 10−3 s.

On the other hand, there are also neutrons given by radioactive processes;
in these cases, these neutrons have pregnancy times, which have to be kept
into account in their lifetime, and this extends remarkably their life; so, there
are two scales for neutrons originated by different processes: µs for the first
kind, and s for the delayed neutrons; this means that we have a stiff problem,
because it is not possible to apply a trivial time discretization: a reasonable
discretization for the fast neutrons may be unreasonable for the delayed ones,
because for them, almost only constant quantities are observed; instead, a
reasonable discretization for the delayed neutrons may be too rough for the
fast ones.

So, how to apply this asymptotic matching method? The first step is
to solve the two equations; for the left one, applying once again variable
separation:

y′L = −
(

1 +
1

x2

)
yL =⇒ y′L

yL
=

(
−1 +

1

x2

)
so:

yL(x) = Ke−x+
1
x

and, with the boundary condition, it is possible to show that K = 1:

yL(x) = e−x+
1
x

Then, for what concerns the second equation:

yR(x) = Ae−ε
x3

3
−x

where A is the integration coefficient, and it can not be determined by
the x = 1 boundary condition, since this solution is not valid for x = 1. But
this means that A is a degree of freedom which can be used in order to let
the two functions overlap in the part of the domain where both methods are
valid. How to find this region? Well, we have to force the two solutions to
have the same analytical expression:
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e−x+
1
x = Ae−ε

x3

3
−x

if we assume x to be not so small, we get:

yL ∼ e−x

while, if we put a = 1 (this is suggested by the fact that the multiplying
constant of the exponential in yL is 1):

yR = e−x

therefore, this can be done if we determine a good matching interval; to this
aim, we have to require, for yR, that, in order to make it equal to e−x:

ε
x3

3
� x =⇒ x2 � 1

ε
so:

x� ε−
1
2

For the left equation, it is necessary to require that:

x� 1

x

so, finally, the interval where matching occurs is:

1� x� ε−
1
2

4.4 Final comments

In order to conclude this chapter on asymptotic matching, some additional
comment should be provided.

Firstly, considering the last equation solved, it is possible to ask if

1� x� ε−
1
3

is acceptable as interval. The answer is yes: indeed, ε−
1
3 is smaller than ε−

1
2 ,

so the bound is satisfied.
What if we choose:

49



ε−
1
5 � x� ε−

1
3

In this case, this is not possible, because no information concerning the ab-
solute value of x is provided: only its relationship with ε, so it is possible to
obtain low values of x, which can not be accepted.

Another comment is: this explanation on asymptotic matching has been
done on a first order approximation; however, if we write yL as a perturbation
series:

yL(x) = y0 + εy1 + ε2y2 + ...

forcing:

y0(1) = 1, yn(1) = 0, n ≥ 1

then, we have a higher order approximation of the unknown.
What can be observed applying asymptotic matching with higher order

terms is that the validity of the left representation changes, and the same
applies to the right representation; what happens is that solutions tend to
the reference solution, and the matching coefficient tends to e

ε
3 .
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Chapter 5

Complements to the course

5.1 Eigenvalue problems

5.1.1 Imaging eigenproblems

Which is the philosophy, the physical meaning of an eigenproblem? To try
to explain this, it is possible to use some visual and nice example. An eigen-
value problem has the following actors: ϑ̂, which is the operator, defined
in a certain domain; yn, which is the n-th eigenfunction, or eigenvector (if
we are considering a finite-dimensional eigenproblem), and λn, which is the
eigenvalue associated to the n-th eigenfunction.

Let us imagine, in some funny way, that our operator is an island: its
boundary conditions, which are the boundary which can not be crossed from
what lays inside the island, which means the set of things on which our
island/operator can operate, is the sea; then, let us assume that we are inter-
ested on the population of a certain species, like rabbits, on this island. Our
objective is to understand how the island affects the reproduction of rabbits.
Indeed, in this island there may be hunters, or wild animals, attacking the
poor rabbits; on the other hand, rabbits, depending on their distribution
on the island, may be encouraged to reproduce: the island operates on the
rabbits distribution, making them encounter or be killed, and after a first
application of the island on the initial population, we will have a different
amount of rabbits: the second generation.

Let y0 be the population of the island when we start observing the rab-
bits distribution; this is the initial condition of the problem. After the first
observation, we will observe y1, which is the distribution of rabbits generated
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by the initial condition, and by the effect of the island:

y1 = ϑ̂y0

So, y1 is the second generation of rabbits. The interesting thing is the fact
that since y0 has no information on the island, it is unaware of ϑ̂. Instead, y1
is caused by both y0 and ϑ̂, so it has some information: indeed, the island
may cause propagation, killing events or other phenomena. But y1 does not
know the entire information of the island: indeed, it knows only the effect
of ϑ̂ on the specific y0 distribution; moreover, the effect of ϑ̂ on y0 is not
“complete”: we just observed at a certain time the distribution y1, without
being sure that balance has been achieved. Then it is possible to go on, to
observe another time the distribution of rabbits, and to see:

y2 = ϑ̂y1

and so on.
Now, let us consider the integral of y0, called 〈y0〉, and the same for y1,

〈y1〉, then, let us compute the ratio R1 as:

R1 =
〈y1〉
〈y0〉

this has some dependence on ϑ̂, and, depending on it, it can be bigger or
lower than 1: if the island is encouraging reproduction, the number of rabbits
will increase while, if the island is discouraging reproduction, the number of
rabbits will decrease. In general:

Rn =
〈yn〉
〈yn−1〉

is the ratio of the rabbits at the n-th observation to the one at the n− 1-th
observation. Newer observations correspond to longer times, and rabbits,
after a certain time, find their balance with the island: they learn to live
with the island, and the reproduction phenomenon tends to become always
the same. This means that, for a high n (which means a generation very far
from the initial one), this ratio tends to become constant:

lim
n→∞

Rn = lim
n→∞

〈yn〉
〈yn−1〉

= λ
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indeed, if this ratio tends to be constant, we have that:

yn = ϑ̂yn−1

but:

yn = Rnyn−1

so:

Rnyn−1 = ϑ̂yn−1

if n → ∞, it is possible to confuse n and n − 1, and this means that Rn

becomes constant and equal to this λ:

ϑ̂yn−1 = λyn−1

and this λ, as it is written here, is the eigenvalue of the operator.
This rabbits story helped us to understand (I hope so!) the meaning of

λ: it is basically a parameter which provides information on the asymptotic
state of the system, so on the steady state. Indeed, λ is fairly related to
initial conditions (not directly, because, for n = 1, R1 is very different from
Rn, for big n); instead, it is related to the physics of the system. This is why
it is called eigenvalue: this is a proper value of the system, related to the
homogeneous part, not on the excitation! It is related to how the system
behaves, once it is left by itself.

A generic operator equation has an expression like:

(ϑ̂− λÎ = y(x) = S(x)

where:

y(x) = yh(x) + yp(x)

and yh(x) is the homogeneous soulution, obtained for S(x) = 0 (the proper
solution), and yp(x) is the particular solution, caused by the source. Since
yh is a solution of:

(ϑ̂− λÎ = yh(x) = 0

then it is possible to write, just for it:
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ϑ̂yh = λyh

usually there is not only a solution to this problem, but there are several
values {λi}; this set can be finite, numerable, or also continuous. This is
related to the spectrum of the operator ϑ̂. The eigenfunction yi is a solution
which lives without any excitation from outside: a proper state of the system.

Knowing the spectrum of the operator means knowing everything of it;
indeed, mathematicians have shown that the set of eigenvectors (or eigen-
functions) is a basis for the space where the operator is defined. Moreover,
since every vector of the space can be written as a linear combination of other
vectors belonging to it, it is possible to write every solution of the operator
equation as a linear combination of the eigenfunctions!

This, in Rn, is:

y =
N∑
i=1

ciu i

where u i are the eigenvectors of our space. Instead, with a continuous spec-
trum:

f(x) =
∑
i

ciyi(x)
continuity−→

∫
D
g(ξ)y(ξ, x) dξ

One property of eigenvectors, in many problems, is the fact that they are
orthogonal (and, since the solution of an eigenvalue problem provides infor-
mation only on the “orientation” of the vectors, it is possible to normalize
them and make them orthonormal); however, this occurs if the operator is
selfadjoint, which means that it equals its adjoint. On the other hand, if our
problem has no orthogonal eigenvectors, it is possible to use the trick which
we adopted some chapters ago, and to build the adjoint problem:

ϑ̂†y† = λ†y†

the solutions of the adjoint problem are biorthogonal to the ones of the
direct problem, and so projection can be applied to them, in order to have
a smart basis on which calculate the coefficients; smart means that, if all
the projections are zero except for one contribution, each coefficient can be
calculated as a single projection: indeed, all other contributions equal zero!
This is why orthogonal bases are so attractive: each contribution depend
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only on a single term, so it is possible to improve the approximation, by
adding new terms, without needing to modify the previous coefficients.

5.1.2 Fourier analysis and heat equation

Even if the names “eigenvalue” or “eigenvector” come from the 19th century,
the inventor of the idea behind eigenproblems was Fourier. At that time, one
of the most important problems which had to be studied was heat conduction,
which was shown to satisfy the so-called heat equation:

∂f(r , t)

∂t
= a∇2f(r , t) + bf(r , t) + S(r , t)

where ∇2 is the Laplace operator (operating only on spatial coordinates),
and the solution f depends on both space r and time t. Fourier, as well as
other mathematicians, didn’t like the presence of the ∇2 operator, because
it complicates the expression very much. But Fourier had a very genial idea:
he knew that there were functions yn, called harmonic functions, which
were the solutions of the homogeneous Laplace equation, i.e.:

∇2yn(r) = λnyn(r)

to make a simple example of these functions, in one dimension:

d2

dx2
cos(mx) = −m2 cos(mx)

therefore, for this case, λ = −m2. Extending this idea to the three-dimensional
functions, the brilliant idea of Fourier was to represent the solution of the
heat equation f(r , t) as:

f(r , t) =
∞∑
n=1

cn(t)yn(r)

so, he applied a variable separation between time and space, and he expanded
the spatial part of the solution as a sum of harmonic functions. Why is this
so useful? Well, let us substitute this expression in the heat equation:

∂

∂t

∞∑
n=1

cn(t)yn(r) = a∇2

∞∑
n=1

cn(t)yn(r) + b

∞∑
n=1

cn(t)yn(r) + S(r , t)
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applying linearity, this equation becomes:

∞∑
n=1

yn(r)
∂cn(t)

∂t
= a

∞∑
n=1

cn(t)∇2yn(r) + b

∞∑
n=1

cn(t)yn(r) + S(r , t)

but, since yn(r) are harmonic functions, it is possible to substitute the eigen-
value relationship:

∞∑
n=1

yn(r)
∂cn(t)

∂t
= a

∞∑
n=1

cn(t)λnyn(r) + b

∞∑
n=1

cn(t)yn(r) + S(r , t)

this means that we replaced the ∇2 operator with λn!
Now, it is possible to remember that it is possible to obtain either an

orthogonal basis with yn, or a biorthogonal basis with the adjoint Laplace
equation, and so it is possible to project on the orthogonal or biorthogonal
terms (multiply by means of inner product) this equation, obtaining:

〈
ym,

∞∑
n=1

yn(r)
∂cn(t)

∂t

〉
=

〈
ym, a

∞∑
n=1

cn(t)λnyn(r) + b
∞∑
n=1

cn(t)yn(r) + S(r , t)

〉
, ∀m

which becomes:

∞∑
n=1

〈ym(r), yn(r)〉 ∂cn(t)

∂t
= a

∞∑
n=1

cn(t)λn 〈ym(r), yn(r)〉+ ...

+ b
∞∑
n=1

cn(t) 〈ym(r), yn(r)〉+ 〈ym(r), S(r , t)〉 , ∀m

but these inner products are constants, which depend on the normalization:

〈ym(r), yn(r)〉 = κmnδmn

so, since all these constants are the same on the same equation, we obtain:

∂cn(t)

∂t
= acn(t)λn + bcn(t) + Sm(t), ∀m
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where the source depends only on t, since the dependence on r has been
removed by integrating on it (inner product):

Sm(t) = 〈ym(r), S(r , t)〉
This is a set of ordinary differential equations, which are very easy to be
solved. So, by exploiting the eigenvalue idea, we reduced a parabolic partial
differential equation to a set of ordinary differential equations. This is the
very same idea applied by Marcuvitz and Schwinger for the modal analysis
in waveguide theory.

5.2 Computation of integrals

In this section we are going to calculate, using perturbative methods, an
indefinite integral. The problem under analysis is:

F (ε) =

∫ +∞

0

e−t−
ε
t dt

The integral F is a function of the parameter ε; in this analysis, we are inter-
ested in small values of ε. So, let us consider the zero order approximation:

F (0) =

∫ +∞

0

e−t dt = 1

The idea which we can try to exploit is to transform this problem in an
initial value problem: sometimes, when working on perturbation analysis,
we should look at an equivalent initial value problem; how can we do this?
Well, the idea is quite simple: it is possible to differentiate this integral with
respect to the parameter ε:

F ′(ε) =

∫ +∞

0

(
−1

t

)
e−t−

ε
t dt

where F (0) = 1. The problem now is that F (ε) was a converging integral
while the last one, in F ′(ε), is singular; the differentiation operator introduced
singularities. It is possible to try to differentiate another time with respect
to ε, and what we obtain is:

F ′′(ε) =

∫ +∞

0

1

t2
e−t−

ε
t dt
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so:

F ′′(ε) =
1

ε
F (ε =

So, we built a differential problem starting from an integral problem:F ′′(ε) =
1

ε
F (ε)

F (0) = 1

It is possible to apply a change of variables, in order to obtain:

F (ε) = 2
√
εK1(2

√
ε)

where K1 is the Kelvin function: the modified Bessel function of second kind.
This means that this program has a reference solution, which can be used to
perform benchmark. Moreover, the expression of the differential problem is
very suitable for perturbation analysis.

It is possible to write:

2
√
εK1(2

√
ε) = 1 + ε log ε+ ε

(
2
√
ε− 1

)
+

1

2
ε2 log ε

This is a singular perturbation problem, because there is no way to produce
a Taylor series for the perturbation; so, here perturbation analysis can be
carried out only by means of an asymptotic matching method. So, let us
consider quickly the application of the asymptotic matching method, in order
to find the intervals of validity:

• for small ε values, large t values, the term ε
t

becomes negligible, and so
−t in the exponential becomes dominant:

t� 1, e−te−
ε
t =⇒ e−t ' 1− t+

t2

2
+ ...

• the second case is t� ε; in this case:

e−te−
ε
t ' e−t

(
1− ε

t
+

ε

2t2
− ...

)
this is the MacLaurin expansion of 1

t
for t→∞.
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This interval can not be determined a priori; indeed, we have two expansions:
one for low t values, one for t → ∞. This means that it is necessary to use
two different representations of the integral; in other words, it is necessary
to break the integration domain [0,+∞) in [0, δ] + [δ,+∞):

F (ε) =

∫ δ

0

e−t−
ε
t dt+

∫ +∞

δ

e−t−
ε
t dt

them it is possible to apply perturbation analysis on these integrals; however,
the problem is that it is necessary to determine the value of δ as a function
of ε: indeed, fixed ε, the point is moving.

5.3 Reducing a model with perturbation anal-

ysis

In this section we are going to show briefly how a model can be simplified by
means of perturbation analysis, exploiting some physical considerations.

Let us consider, as an example, the Boltzmann transport equation in one
dimension:

µ
∂ϕ

∂x
+ σ(x)ϕ(x, µ) =

1

2
σs

∫ +1

−1
ϕ(x, µ′) dµ′ + S(x, µ)

This is an integro-differential equation, where µ = cosϑ, and ϑ is a certain
angle; our objective is to change the structure of this equation working with
perturbation methods; for instance, it is possible to assume the presence of
rarified electrons, in order to apply some simplification to the model.

Let us assume that, given σa the absorbtion parameter, given σ the total
collisions parameter, and σs the scattering collision parameters, the absorbed
particles are all the particles which are not scattered, therefore:

σa = σ − σs =⇒ σs = σ − σa
If we want for instance to obtain a model where few particles are absorbed,
instead of σa we can consider εσa, where ε → 1; then, we can desire small
absorption, but a lot of collisions; in this case we divide σ by our ε instead
than multiplying times it:

σs =
1

ε
σ − εσa
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This comes from physical considerations: small absorption, and high collision
rate.

For what concerns the source, we are looking for particle density, so S is
the source; close to the source, we have anisotropic functions, but far away
from the sources, particles are scattering in any direction; if we want to con-
sider to be far from the source, S → εS. Using these last two approximations,
it is possible to re-write the equation:

µ
∂ϕ(x, µ)

∂x
+
σ

ε
ϕ(x, µ) =

1

2

(σ
ε
− σaε

)
+ εS(x, µ)

Now, if we define:

Φ(x) =

∫ +1

−1
ϕ(x, µ′) dµ′

Then, we can consider the following perturbation expansion for ϕ and Φ:{
ϕ(x, µ) = ϕ0(x, µ) + εϕ1(x, µ)

Φ(x) = Φ0(x) + εΦ1(x)

If we take these two expressions, we substitute them in the equation, we
drop high order terms, can we forsee what is going to happen? Well, the
leading terms of the equations are the ones which are O(ε−1), which require
a singular perturbation analysis; we will get relationships for ϕ, for Φ, and
we can focus on Φ0; what will be obtained is an independent equation of Φ0:

d

dx

(
1

3σ(x)

dΦ0(x)

dx
− σa(x)Φ0(x) + S0

)
= 0

this is a diffusion equation, where σ(x) are the diffusion coefficients; therefore,
we quickly proved that the diffusion model can be derived starting from the
transport theory, stopping the perturbation series to the first term. This is
procedure of model reduction.
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