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Chapter 1

Conjugate gradient method

In these notes we are going to discuss the solution of large linear systems
using advanced iterative methods. Therefore, the objective is to solve a
matrix equation like:

M x = h

where M is a square matrix, so M ∈ Rn,n; then, x , h ∈ Rn; this introduces
some simplifications, which can be used to reduce the number of terms in
the computations; however, this last hypothesis is not strictly mandatory.

The idea behind the method introduced in this section is to recall the
convex paraboloid of the two-dimensional space: to have a situation such
that

z = xT M x

has a unique branch, exactly like a parabola; indeed, everything is positive,
owing to the fact that all the eigenvalues are positive. The fact to have a
positive definite operator allow us to use the following idea: the solution of
the linear system can be found minimizing a certain functional J(x ) of the
solution x : x represents the set of parameters for which J is minimum, in
some sense. We are going to find a proper functional to be minimized.

The idea behind this minimization requires to have a matrix which is
symmetric, positive-definite, in order to be hermitian and so to build J(x )
with the standard variational principle. To this aim, let us start from the
initial system:
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M x = h

it is possible to multiply both members times the adjoint of M , identified
by M a; this is the transposed of the matrix with the elements equal to the
complex conjugates of the elements of the previous matrix:

M a = (M ∗)T

so:

M aM x = M ah

Then, it is possible to define A and b as:

A = M aM

and

b = M ah

so the system becomes:

Ax = b

this is called associated linear system. The difference between the pre-
vious system and this new system is that, in this case, A is Hermitian, and
therefore it is positive-definite and symmetric, so it will be possible to apply
for it the variational principle. Let r be the residue of the associated linear
system:

r = b − Ax

instead, let us define the residual of the original system r = h −M x ; it is
possible to find the expression of the functional which has to be minimized,
in order to solve the system, by applying some manipulation to the euclidean
norm of this residual; by this way, we are finding the solution of the system
as the vector such that the euclidean norm of the difference between M x
and the known term is minimum:
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||r ||2 = 〈r , r〉 =
〈
M x − h,M x − h

〉
=

=
〈
M x ,M x

〉
−
〈
h,M x

〉
−
〈
M x , h

〉
+ 〈h, h〉 =

=
〈
M aM x , x

〉
−
〈
M ah, x

〉
−
〈
x ,M ah

〉
+ 〈h, h〉 =

=
〈
Ax , x

〉
− 〈b, x 〉 − 〈x , b〉+ 〈h, h〉 =

, J(x ) + c

Where:

c , 〈h, h〉

and:

J(x ) =
〈
Ax , x

〉
− 〈b, x 〉 − 〈x , b〉

Since b is related to h and x is real, it is possible to write:

J(x ) =
〈
Ax , x

〉
− 2 〈b, x 〉

We just proved that minimizing J corresponds to minimizing the euclidean
norm of the residue, which is the difference of the A matrix applied to the so-
lution x with the known term. Therefore, thanks to the idea which have been
previously discussed concerning the fact that the form is positive-definite
symmetric. Then, it makes sense to compute the gradient of this functional,
in order to find its global and unique minimum:

∇J(x ) =⇒ dJ(x )

dxi
= êTi Ax + xTA êi − 2êi b

let us consider the term xT A êi: the left product xTA is a vector, and, of all
its components, only the i-th one will survive, owing to the fact that êi is
the unit vector of the canonical basis (all zeros except the i-th component).
The same applies to the êiAx term; but, since A is symmetric, it is possible
to say that:

êTi Ax = xTA êi

indeed, thanks to the canonical basis unit vector, the components are not
mixed. So:
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(∇J(x ))i = 2êTi Ax − 2êi b =⇒ ∇J(x ) = 2
(
Ax − b

)
= −2r(x )

where r is the residual of the associated Hermitian linear system.
There is an alternative point of view for the interpretation of the func-

tional J(x ): let us consider the following quadratic functional:

E(x ) =
〈
A(x − x ), x − x

〉
where x is the actual solution of the linear system; by defining the error
functional with respect to the solution, e(x ), as:

e(x ) = x − x

we have:

E(x ) =
〈
Ae(x ), e(x )

〉
= ||e(x )||2A

this quantity is a norm, because it satisfies all the properties of a norm.
Moreover, there is a relation between the residual and the error; indeed, if
we write the residual for the associate system, we have:

r(x ) = b − Ax = Ax − Ax = A(x − x ) = Ae(x )

so, using the relationships just reported:〈
Ae(x ), e(x )

〉
=
〈
r ,A−1r

〉
Since A is positive-definite symmetric, also A−1 is and therefore:〈

r ,A−1r
〉

= ||r ||2A−1

This show us that E(x ) is either the norm of the error of the norm of the
residual, using two different definitions of norms (more precisely, with the
dual norm); all these norms are simply weighted versions of the L2 norm;
indeed, if A = I , both these norms are reduced to a standard euclidean
norm. In other words, what we have found is a relationship between the
norm found starting from A or A−1.

Furthermore, it is possible to show that E(x ) and J(x ) are the same, in
two different reference systems; indeed:
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E(x ) =
〈
A(x − x ), x − x

〉
=
〈
Ax , x

〉
− 2

〈
Ax , x

〉
+
〈
Ax , x

〉
=

=
〈
Ax , x

〉
+ J(x )

the first term is only a translation, while the second term is exactly J(x ).
Therefore, we proved that finding the minimum of E is exactly the same of
finding the minimum of J , so of the residual; indeed, it is like working on the
domain instead that on the image of M , because:

r(x ) = Ae(x )

Moreover, since the only difference between the two functional is a transla-
tion, which is a constant term, it can be found that:

∇J(x ) = ∇E(x ) = −2r(x )

Now, let x k be a tentative of solution of our system at a certain k-th step;
our objective is to move towards the real solution of the system; let p

k
be the

direction in which we want to move to get closer to the solution, and let αk
be the weight with which we want to approach the solution (in other words,
αk measures the width of the step); then, we can define the approximation
of the solution at the k + 1-th step as:

x k+1 = x k + αkpk

the term αkpk is called step, because it represents the step from the k-th
solution towards the k + 1-th one.

As criterion for the selection of p
k

and αk, we desire to have that the func-
tional evaluated in x k+1 is lower than the value of the functional evaluated
at x k:

E(x k+1) < E(x k)

How can we find the αk parameter? Let us see:
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E(x k+1) =
〈
A(x − x k+1), x − x k+1

〉
=

=
〈
Ax k+1, x k+1

〉
− 2

〈
x k+1,Ax

〉
+
〈
Ax , x

〉
=

=
〈
Ax k, x k

〉
+ 2αk

〈
Ax k, pk

〉
+ α2

k

〈
Ap

k
, p

k

〉
+

− 2
〈
x k,Ax

〉
− 2αk

〈
p
k
,Ax

〉
+
〈
Ax , x

〉
=

=
〈
A(x − x k), x − x k

〉
− 2αk

〈
Ap

k
, x − x k

〉
+ α2

k

〈
Ap

k
, p

k

〉
=

=
〈
Ae(x k), e(x k)

〉
− 2αk

〈
Ap

k
, e(x k)

〉
+ α2

k

〈
Ap

k
, p

k

〉
since the matrix A is Hermitian, it is possible to move it from one side to
another of the inner products without any additional operation on it. The
objective is to find the αk for which this E is minimum; using calculus, the
minimum is a stationary point; for the considerations of the starting part of
the chapter, we have only one stationary point. Therefore:

dE

dαk
= −2

〈
Ap

k
, e(x k)

〉
+ 2αk

〈
Ap

k
, p

k

〉
= 0

this is satisfied if:

αk =

〈
Ap

k
, e(x k)

〉
〈
Ap

k
, p

k

〉 =

〈
p
k
, r(x k)

〉
〈
Ap

k
, p

k

〉
This is the optimal step size.

It can be shown that, for all possible p
k
, the residual of the approxmation

at the k + 1 step is orthogonal to the one at the k step, if the step size αk is
the optimal one, calculated in the previous expression:〈

rk+1, rk
〉
,
〈
r(x k+1), r(x k)

〉
= 0

Let us prove this statement:

rk+1 = b − Ax k+1 = b − Ax k − αkAp
k

= rk − αkAp
k

so:
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〈
rk − αkAp

k
, p

k

〉
=
〈
rk, pk

〉
− αk

〈
Ap

k
, p

k

〉
=

=
〈
rk, pk

〉
−

〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉 〈Ap
k
, p

k

〉
= 0

Now, in order to add more ideas, let us manipulate the expression of the
functional E(x k+1):

E(x k+1) =
〈
A(x − x k+1), x − x k+1

〉
=

=
〈
A(x − x k), x − x k

〉
− 2αk

〈
Ap

k
, x − x k

〉
+ α2

k

〈
Ap

k
, p

k

〉
=

=
〈
A(x − x k), x − x k

〉
− 2αk

〈
Ap

k
, ek

〉
+ α2

k

〈
Ap

k
, p

k

〉
and: 〈

Ap
k
, ek

〉
=
〈
p
k
, rk

〉
If we put the expression of the optimal step size instead of αk, we obtain:

E(x k+1) = E(x k)− 2

〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉 〈p
k
, rk

〉
+


〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉
2 〈

Ap
k
, p

k

〉
=

= E(x k)−

〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉 =

I −
〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉
E(x k)

E(x k)

This last passage is not very formal since we are bringing vectors at the
denominator, but since this is true for each component, we are considering
this notation with this meaning. Let us further rewrite these expressions:

E(x k) =
〈
Aek, ek

〉
= 〈rk, ek〉 =

〈
rk,A

−1rk
〉

so, substituting:
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E(x k)−

〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉 =

I −
〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉 〈
rk,A

−1rk
〉
E(x k)

This is a recursive expression; therefore, it can be applied for every k. This
equations states that for each p

k
which is not orthogonal to the residue rk,

it is possible to have a reduction of the functional.

1.1 Steepest descent method

Now, let us focus on p
k
: the most natural direction which someone can think

is the one opposite to the gradient of the functional; indeed, the gradient
is also the vector of maximum variation of a quantity. Therefore, the first
method which will be realized is the steepest descent method, also called
gradient method; this method consists of choosing:

p
k

= rk

if we use this approach, recalling the previous results, we obtain:

αk =
||rk||

2〈
Ark, rk

〉
and:

E(x k+1) =

[
I − ||rk||

4〈
Ark, rk

〉 〈
A−1rk, rk

〉]E(x k)

By using the Kantorovich inequality, which is not trivial to be proved (and
therefore it will not be discussed in this document), it is possible to show
that the second term depends only on the conditioning number of the matrix
κ(A); indeed:

E(x k+1) =

[
κ(A)− 1

κ(A) + 1

]k
E(x 0)

where:
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κ(A) =
λmax(A)

λmin(A)

and λmax(A), λmin(A) are the maximum and the minimum eigenvalues of the
matrix A respectively.

What we proved now is that the number of iterations required to achieve
a good result in terms of norm of the residual (which has to be minimized) is
strongly dependent on the conditioning number of the matrix of the system
A; if this number equals 1 (best possible case), we can converge to the solution
with one iteration; however, if κ is very large, it is necessary to perform a very
high number of iterations to solve the system. To sum up, if the condition
number of the matrix is small, this method is very good; otherwise, it would
be better to find something else.

So, question is: is p
k

= rk the best possible choice? Is it possible to do
something better? Let us use:

p
k

= rk + βkpk−1

What does it means to do this? Well, we proved that rk and p
k−1 are

always orthogonal, if we use the optimal step size αk; no information has
been provided, right now, about βk; so, which is the optimal value for βk ?
Obviously, the one which provide us with the largest reduction of the error.

Let us try to study the quantity:〈
p
k
, rk

〉
= 〈rk, rk〉+ βk

〈
p
k−1, rk

〉
= 〈rk, rk〉

since we just recalled the fact that the residue of the k-th step is orthogonal
to the k− 1 direction; therefore, this quantity does not depend on βk, and it
can not be used to evaluate it.

On the other hand, let us recall:

E(x k+1) =

I −
〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉 〈
rk,A

−1rk
〉
E(x k)

playing with βk it is necessary to make the term
〈
Ap

k
, p

k

〉
as small as

possible, in order to minimize the term inside the square brackets. So:
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〈
Ap

k
, p

k

〉
=
〈
Ark, rk

〉
+ 2βk

〈
Ap

k−1, rk

〉
+ β2

k

〈
Ap

k−1, pk−1

〉
Just like before, let us calculate the derivative of this term with respect to
βk:

d
〈
Ap

k
, p

k

〉
dβk

= 2
〈
Ap

k−1, rk

〉
+ 2βk

〈
Ap

k−1, pk−1

〉
= 0

so:

βk = −

〈
Ap

k−1, rk

〉
〈
Ap

k−1, pk−1

〉
The method based on this step is called conjugate gradient method. The
reason why this name has been chosen is now motivated; since:〈

Ap
k
, p

k−1

〉
= 0

we have that the descent direction is orthogonal in a product which depends
also on A. Let us prove this:

〈
Ark, pk−1

〉
+ βk

〈
Ap

k−1, pk−1

〉
=

=
〈
Ark, pk−1

〉
−

〈
Ap

k−1, rk

〉
〈
Ap

k−1, pk−1

〉 〈Ap
k−1, pk−1

〉
= 0

This proves the previous statement.
This has interesting effects: supposing to be in R2, considering contour

lines, they are ellipses:
Where the axes of these ellipses are related to the largest and smallest

eigenvalues of the matrix A. If we arrived at a certain point through the
step p

k
, then we have to choose a descent direction rk+1; what is done in the

conjugate gradient method is to take an A-orthogonal direction, instead of a
direction orthogonal with respect to the previous step.

The idea of the gradient method was based on the fact that if the contour
lines are circles, the method is extremely efficient; instead, in this method,
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we are taking into account, by including the effect of A in the calculation of
the step, the fact that the contour lines are ellipses; the gradient method fails
when the contour lines are very different from circles (i.e. when the minimum
and the maximum eigenvalues are very different), while in this case we are
somehow taking this into account.

If we use this method, we obtain:

E(x k+1 ≤ 4


√
κ(A)− 1√
κ(A) + 1

E(x k)

this is much better than before!
It is possible to prove that the sequence of the residuals that we produce

is orthogonal; indeed:

rk+1 = b − Ax k+1 = b − Ax k − αkAp
k

= rk − αk Ap
k

so, using this relationship:

〈
rk+1, rk

〉
= 〈rk, rk〉 − αk

〈
Ap

k
, rk

〉
=

= 〈rk, rk〉 −

〈
p
k
, rk

〉
〈
Ap

k
, p

k

〉 〈Ap
k
, rk

〉
=

= 〈rk, rk〉 −
〈
p
k
, rk

〉
+ βk

〈
Ap

k
.p
k−1

〉
= 〈rk, rk〉 −

〈
p
k
, rk

〉
=

= 〈rk, rk〉 − 〈rk, rk〉+ βk

〈
p
k−1, rk

〉
= 0

in these steps we exploited the fact that p
k

is A-orthogonal to p
k−1, and

the fact that
〈
rk+1, pk

〉
= 0, as we proved in the previous part, concerning

generic gradient methods (and this is valid also here).
Using similar steps it is possible to prove that the conjugate gradient

method exhibits several properties:

• the residual of the following iteration equals the one of the present one
(just proved):

〈
rk+1, rk

〉
= 0
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• all the residuals are orthogonal:

〈rk, r i〉 = 0, ∀i = 0, 1, ..., k − 1

• the p
k

steps are 2-by-2 orthogonal:〈
p
k
,Ap

i

〉
= 0, ∀i = 0, 1, ..., k − 1

• The space spanned by the residuals is the same space spanned by the
steps:

span ({r 0, r 1, ..., rk}) = span
({

p
0
, p

1
, ..., p

k

})
Let us focus on this last point: we stated that p

1
is orthogonal to Ap

0
, that

p
2

is orthogonal to Ap
1
, and so on; it is possible to prove that:

span ({r 0, r 1, ..., rk}) = span
({

r 0,Ar 0,A
2r 0,A

3r 0, ...,A
k−1r 0

})
= Kk

{
A, r 0

}
where Kk

{
A, r 0

}
is the Krylov space generated by the span of A and the

initial r 0.
All these properties have relevant consequences on the method; indeed it

is possible to prove, thanks to these considerations, that:

E(x k) ≤ E(x )

where:

x ∈ x 0 +Kk
{
A, r 0

}
this means that x k provides the minimum of E(x k), in the Krylov subspace;
then, at each iteration we increase the dimension of the Krylov space, and
this means that we are searching for the minimum of a bigger space; after n
iterations, the Krylov space equals Rn; in other words, after at most n itera-
tions, we have the exact solution, since the minimum becomes the minimum
in Rn.

Since all residuals are orthogonal, we are sure that the dimension of the
space is increasing every time, at each iteration.
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1.1.1 Final notes

If we want to use the conjugate gradient algorithm as an iterative method,
it is necessary to introduce a stopping criterion, aimed at establishing when
the desired tolerance is achieved. Let t be this value of tolerance; then, a
criterion may be: ∣∣∣∣rk+1

∣∣∣∣
||b||

≤ t

Indeed, it is possible to prove that this quantity is related to the error:∣∣∣∣x k − x k+1

∣∣∣∣
||b||

≤ κ(A)

∣∣∣∣rk+1

∣∣∣∣
||b||

so, if the error can be controlled by this, if we require that this quantity is
smaller than a certain constant, we know that the error, keeping into account
the conditioning number κ, will be controlled by this.
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Chapter 2

Notes on Krylov subspaces

In the previous chapter we introduced the idea of Krylov subspace, but we
discussed any detail concerning it. In this chapter we are going to introduce
some notes concerning these spaces and some additional ideas.

Let us consider the definition of a Krylov space:

Km
{
A, v

}
= span

{
v ,Av ,A2v , ...,Am−1v

}
It is important to remark that the dimension of this space in general is
different from m: indeed, it is not possible to know if these vectors are
linearly dependent. For instance, if A is a symmetric positive-definite matrix,
it is possible to prove that:

dim
{
Km

{
A, v

}}
= m

this occurs, for instance, in conjugate gradient; however, we are going to
generalize these ideas, in order to introduce the GMRES method.

Let µv be the degree of the Krylov space, which is the dimension of
the largest Krylov space that we can get:

µv =⇒ Kµv = span
{
v ,Av ,A2v , ...,Aµv−1v

}
this means that if we add other vectors to this space starting from this
construction, it will surely be linearly dependent on the others.

Basically, the Krylov space is the space of vectors x ∈ Rn such that:

x = pm−1(A)v
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where pm−1(A) is the polynomial of degree m − 1 of the matrix A, applied
to the vector v . This idea can be exploited in order to find a basis for
this Krylov space. Since the most attractive bases are the ones built with
orthonormal elements, we may try to consider v 1 parallel to r 0, and to apply
the Gram-Schmidt algorithm to find an orthonormal set of vectors. Surely,
we can write:

v 1 =
r 0
||r 0||

so:

〈v 1, v 1〉 =

〈
r 0
||r 0||

,
r 0
||r 0||

〉
=

〈
||r 0||

2

||r 0||
2

〉
= 1

then, we have to build a vector orthogonal to v 1; to this aim, let us consider:

v = Ar 0 −
〈
Ar 0, v 1

〉
v 1

then, this vector is surely orthogonal to v 1; indeed:

〈v 1, v〉 =
〈
v 1,Ar 0 −

〈
Ar 0, v 1

〉
v 1

〉
=
〈
v 1,Ar 0

〉
−
〈
Ar 0, v 1

〉
〈v 1, v 1〉 =

=
〈
v 1,Ar 0

〉
−
〈
Ar 0, v 1

〉
= 0

otherwise, this vector should equal 0; this occurs in the case in which the
maximum dimension of the Krylov space is 1. Now, let us define v 2 as the
normalized version of v :

v 2 =
v

||v ||
=

Ar 0 −
〈
Ar 0, v 1

〉
v 1∣∣∣∣Ar 0 −

〈
Ar 0, v 1

〉
v 1

∣∣∣∣
Then, it is possible to define a new v removing from A2r 0 the previous vectors

projected on A2v 0, and then v 3 normalizing this:

v 3 =
A2r 0 −

〈
A2r 0, v 1

〉
v 1 −

〈
A2r 0, v 2

〉
v 2∣∣∣∣A2r 0 −

〈
A2r 0, v 1

〉
v 1 −

〈
A2r 0, v 2

〉
v 2

∣∣∣∣
and so on.

This procedure is very similar to the Gram-Schmidt algorithm.
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At most, this procedure has to be applied for all the m vectors of the
set; actually, this has to be applied until one of these v i vectors become zero;
indeed, up to this point, all vectors are surely linearly independent on the
previous ones.

Let us consider the following orthonormalization procedure:

b=norm(r0)

v(1)=r0/b

for j=1:m

for i=1:n

h(i,j) = innerproduct(A v(j),v(i))

end

w(j) = A v(j) - sum(h(i,j)*v(i),i=1:j)

h(j+1,j)=norm(w(j))

if h(j+1,j)==0 break

v(j+1)=w(j)/h(j+1,j)

end

This algorithm is not Gram-Schmidt: indeed, A2, A3 and so on are never
evaluated; instead, we are considering the following space:

span {v 1, v 2, v 3, ...} = span
{
v 1,Av 1,Av 2, ...

}
so, v 2 = Av 1, v 3 = Av 2, and so on.

We are going to prove that the space spanned by these vectors actu-
ally equals the Krylov subspace. To this aim, it is necessary to explain the
algorithm, and to verify that each v j can be written as:

v j = pj−1(A)r 0, ∀j = 1...m

Let β be:

β = ||r 0||
just like in the algorithm; then, the statement is trivially verified for v 1:

v 1 =
1

β
r̂0 =

1

β
A0 r 0

17



In order to prove the statement ∀j, we want to apply an induction procedure;
let us guess that induction holds for v i:

v i = pi−1(A) r 0, i = 1, ..., j − 1

this is the induction hypothesis; therefore, following the algorithm, let:

hij =
〈
Av j, v i

〉
so, let us define w j as the j + 1-th non-normalized vector:

w j = Av j −
j∑
i=1

hi,j v i

this means that w j is defined as A, applied to v j, where we subtract all the

vectors with components equal to
〈
Av j, v i

〉
; this is the main difference from

Gram-Schmidt, since in all these operations, only A is applied, not Ai.
Now, we obtained the next vector, but we still have to normalize it;

therefore, it is possible to define:

hj+1,j =
∣∣∣∣w j

∣∣∣∣
so:

v j+1 =
w j

hj+1,j

if we consider instead of j the index j − 1, this transforms to:

v j =
w j−1

hj,j−1

which means that:

w j−1 = v jhj,j−1

now, substituting j → j − 1 also in the definition of w j, we can obtain:

w j−1 = Av j−1 −
j−1∑
i=1

hi,j−1v i

but:
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w j−1 = hj,j−1v j

so,

hj,j−1v j = Av j−1 −
j−1∑
i=1

hi,j−1v i

so, substituting the induction hypothesis in the two members of the right-
hand side, it is possible to obtain:

hj,j−1v j = A pj−2(A) r 0 −
j−2∑
i=1

hi,j−1pi−1(A) r 0

since in the left-hand side we have v j times some coefficient, and in the right-
hand side we have a polynomial in A of degree pj−1, we proved that v j is a
polynomial of degree j − 1 in A, applied to r 0.

This means that the basis built using this algorithm actually is a basis
for the Krylov subspace. This is the Arnoldi’s method.

Now, since we verified that these vectors are a basis, it is necessary to
understand better how to work with them, to find some relationships between
these vectors; indeed, what is the vector Avm ? In order to represent a generic
vector, let us define the matrix V

m
as:

V
m

=
[
v 1 v 2 ... vm

]
then, it is possible to write Am as the matrix V

m
multiplied times H , where

H is the matrix which has as elements the hij which we were discussing
during the definition of the Arnoldi method. During this definition, in the
algorithm, we wrote:

w j = Av j −
j∑
i=1

hi,jv i

so, if m = j, isolating v j:

Avm =
m∑
i=1

hi,mv i + wm

by defining Hm as H (:,m), which means considering the entire m-th column
of the matrix H , this last expression can be written as:
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Avm = V
m
Hm + wm

but, in the Arnoldi method, we also wrote:

wm = hm+1,mvm+1

so:

Avm = V
m
Hm + hm+1,mvm+1

We have that H
m
∈ Rm,m; however, starting from H

m
, it is possible to modify

this matrix, in order to obtain a Hessenberg matrix H
m

. A Hessenberg matrix
is a matrix which is almost triangular, since including the terms hm+1,m

means to add the lower diagonal of the matrix; this diagonal goes from the
element h2,1, to the element hm+1,m; this means that, to obtain this matrix,
it is necessary to introduce all these terms on the lower diagonal and to add
another row to the matrix, which have only zeros except for the last term,
which is hm+1,m, which equals ||wm||, as we discussed in the introduction to
the Arnoldi’s method. So, at this point:

H
m

=


H
m

0 0 0 ... ||wm||


So,

H
m
∈ Rm+1,m

therefore, this matrix is not a Hessenberg matrix, since Hessenberg matrices
are square. Using this definition, it is possible to write more compactly the
last expression, putting all the columns of H instead that only the m-th one:

AV
m

= V
m+1

H
m

It is possible now to multiply both these terms times V T

m
:

20



V T

m
Avm = V T

m
V
m+1

H
m

Let us work on V T

m
V
m+1

: the left matrix is the transposed of V
m

, which, we
remark, is the matrix which has as columns the vectors v i, defined with the
Arnoldi’s method; since we proved that these vectors are equivalent to the
ones built by means of the Gram-Schmidt orthonormalization, these columns
are 2-by-2 orthonormal. Moreover, V T

m
is a m × m matrix, while V

m+1
is

a (m + 1) × (m + 1) matrix; therefore, their product will be a m × (m + 1)
matrix. Moreover, owing to the orthonormality of the columns, it is possible
to say that the left m×m part of the matrix will be the identity. Then, the
product of the V T

m
matrix with the last column returns a column of zeros,

since vm+1 is orthonormal to all the rows of V T
m; so:

V T

m
V
m+1

=


0
0

I 0
0
0
0


this matrix has to be multiplied times H

m
; the effect of the last column of

zeros is to kill the last row of H
m

; the result is:

V T

m
V
m+1

=


0
0

I 0
0
0
0

H
m

= H
m

therefore:

V T

m
V
m+1

H
m

= H
m

and so, finally:

V T

m
Avm = H

m

This is all the theory concerning the Krylov spaces which is needed in order
to formulate the GMRES method.
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Chapter 3

Generalized Minimum
RESidual method (GMRES)

3.1 Algorithm

GMRES is a generalization of the conjugate gradient method, and for this
method we will consider a generic matrix A, without having any hypothesis
on its symmetry or positive-definition; given

Ax = b

the only requirement for A is to be non-singular.
Given a guess solution x 0, we want to build xm such that:

xm ∈ x 0 +Km
{
A, r 0

}
asking as objective the minimization of the norm of the residual:

minxm∈x0+Km{A,r0}
∣∣∣∣b − Axm

∣∣∣∣
In the previous section we have found a base for the Krylov subspaces; let
y
m

be a vector with some elements; a generic vector in the Krylov subspace
will be V

m
y
m

; so:

xm = x 0 + V
m
y
m

therefore, it is possible to calculate the residual corresponding to this y
m

:
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R(y
m

) =
∣∣∣∣b − Axm

∣∣∣∣2 =
∣∣∣∣∣∣b − Ax 0 − AV

m
y
m

∣∣∣∣∣∣2 =
∣∣∣∣∣∣r 0 − AV

m
y
m

∣∣∣∣∣∣2
where it is possible to define a relationship between the residual at the zeroth-
iteration and the first vector of the basis of the Krylov subspace:

r 0 = βv 1

so: ∣∣∣∣∣∣r 0 − AV
m
y
m

∣∣∣∣∣∣2 =
∣∣∣∣∣∣βv 1 − AV

m
y
m

∣∣∣∣∣∣2
but we proved that:

AV
m

= V
m+1

H
m

therefore:

=
∣∣∣∣∣∣βv 1 − V

m+1
H
m
y
m

∣∣∣∣∣∣2
but:

v 1 = V
m+1

ê1

where ê1 is the first vector of the canonical basis; so:∣∣∣∣∣∣βV
m+1

ê1 − V
m+1

H
m
y
m

∣∣∣∣∣∣2 =
∣∣∣∣∣∣V

m+1

(
βê1 − H

m
y
m

)∣∣∣∣∣∣2
since V

m+1
is an orthonormal matrix, it is possible to use the following

property of norms:∣∣∣∣∣∣V
m+1

(
βê1 − H

m
y
m

)∣∣∣∣∣∣2 =
∣∣∣∣∣∣βê1 − H

m
y
m

∣∣∣∣∣∣2
The application of an orthonomal matrix to a vector does not change the
norm of this vector (but only its direction). Let us prove this fact: given
a vector x and a vector y = Q x , where Q is an orthonormal matrix, it is

known from matrix theory that:

Q−1 = QT
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so:

QTQ = Q QT = I

therefore:

||x ||2 = xTx = yTQ QTy = yTy =
∣∣∣∣y∣∣∣∣2

this proves that orthonormal matrices are associated to pure rotations (isome-
tries) of the vector, not to modifications of its length.

Now, let us apply the QR factorization to the matrix H
m

; from this
decomposition we obtain an orthonomal matrix Q and an upper triangular

matrix R:

H
m

= Q R

where:

Q ∈ Rm+1,m+1

and:

R ∈ Rm+1,m

where R is an upper triangular matrix and the last row has only zeros.
Now, by computing this factorization, it is possible to obtain:∣∣∣∣∣∣βê1 − H

m
y
m

∣∣∣∣∣∣2 =
∣∣∣∣∣∣βê1 −Q R y

m

∣∣∣∣∣∣2
The euclidean norm of a vector is the sum of the squares of its components;
since y

m
∈ Rm, and Q R ∈ Rm+1,m, Q R y

m
∈ Rm+1; so, this vector can be

decomposed in two parts: the first m coefficients of this vector are called r ;
therefore, r ∈ Rm; then, the last component is called rm+1; therefore:∣∣∣∣∣∣βê1 −Q R y

m

∣∣∣∣∣∣2 = ||r ||2 + |rm+1|2

to use this idea, let us apply the following trick:

∣∣∣∣∣∣βê1 −Q R y
m

∣∣∣∣∣∣2 =
∣∣∣∣∣∣Q (QTβê1 − R y

m

)∣∣∣∣∣∣2 =
∣∣∣∣∣∣QTβê1 − R y

m

∣∣∣∣∣∣2
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Owing to the fact that R has the last row equal to zero, it is possible to
decouple the following terms:

∣∣∣∣∣∣QTβê1 − R y
m

∣∣∣∣∣∣2 =
∣∣∣∣∣∣QTβê1

∣∣∣
1...m
− R y

m

∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣QTβê1

∣∣∣
m+1

∣∣∣∣∣∣∣∣2
So, we proved that:

R(y
m

) =
∣∣∣∣∣∣QTβê1

∣∣∣
1...m
− R y

m

∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣QTβê1

∣∣∣
m+1

∣∣∣∣∣∣∣∣2
it is possible to play with y

m
in order to minimize this residual, but we can

not vanish the

∣∣∣∣∣∣∣∣QTβê1

∣∣∣
m+1

∣∣∣∣∣∣∣∣2 component; the best that we can obtain is:

R y
m

= βQTê1

∣∣∣
1...m

This is a linear system, where the unknown is y
m

, but this is very easy to
be solved, since R is an upper triangular matrix. Let us define the following
vectors:

γ
1...m

= βQTê1

and let γ
m+1

be the last component.

3.2 Efficient QR factorization: Givens matri-

ces

How can we compute the Q R factorization? The key ingredients to perform

these factorizations are Givens matrices; in R2, the Givens matrix G(ϑ) is
a matrix of type:

G(ϑ) =

[
cosϑ sinϑ
− sinϑ cosϑ

]
by applying G to a vector in R2, we obtain the same vector, rotated of ϑ in
clockwise sense (or a rotation of the system in counterclockwise sense).
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The matrix G is orthogonal, and its inverse is simply the inverse rotation.
Why have we defined this matrix, and how can we use it? Well, let us consider
an unknown vector x as:

x =

[
x1
x2

]
now, let us apply G to this vector, and let us consider, as known term, a
vector which has a vanishing second component:

G x =

[
α
0

]
where:

α =
√
x21 + x22

this means that the application of G has not changed the length of x , but
the rotation is vanishing the second component. Which is the ϑ which puts
the x axis parallel to the vector?[

cosϑ sinϑ
− sinϑ cosϑ

] [
x1
x2

]
=

[
α
0

]
so: {

x1 cosϑ+ x2 sinϑ = α

−x1 sinϑ+ x2 cosϑ = 0

From the second equation:

x1 = x2
cosϑ

sinϑ

substituting in the first one:

x2
cosϑ

sinϑ
cosϑ+ x2 sinϑ = α

which becomes:

x2
(
cos2 ϑ+ sin2 ϑ

)
= α sinϑ

so:
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sinϑ =
x2
α

similarly we can show that:

cosϑ =
x1
α

This was the R2 case; now, let us consider a more general case: G ∈ Rp,p. In
this case, the matrix G is the identity matrix from the components 1...p− 2,
and then for the p − 1 to p components there is the 2 × 2 Givens matrix;
the two ending rows and columns, except for the 2× 2 block, are filled with
zeros. Considering this matrix, the objective may be to obtain:

G x =


b1
b2
b3
...
0


every number should be different from zero, except the last component:

G =


I

cosϑ sinϑ
0 − sinϑ cosϑ


so, this is a rotation in the plane of the p-th and the p − 1-th components,
and the identity out of it. So: xp−1 cosϑ+ xp sinϑ =

√
x2p+1 + x2p

−xp−1 sinϑ+ xp cosϑ = 0

and, since the remaining part of the system is the identity, the remaining
components of the solution, from 1 to p− 2, are equal to the known term.

Why are we focusing on this idea? Taking one coefficient and erase it?
Well, the idea is to apply this to the Hessenberg matrix: indeed, if we want
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to perform a QR factorization on the Hessenberg matrix, the R matrix has to
be triangular; however, Hessenberg matrix is almost triangular, so it is just
necessary to modify it a little, in order to remove these terms and modify
their neighbors; this can be done using Givens matrices, and, by producing
this R, the Q matrix should come as well. The matrix H

m
has a form like:

H
m

=


h1,1 h1,2 h1,3 h1,4 h1,5 ...
h2,1 h2,2 h2,3 h2,4 h2,5 ...
0 h3,2 h3,3 h3,4 h3,5 ...
0 0 h3,4 h4,4 h4,5 ...
0 0 0 h5,4 h5,5 ...
0 0 0 0 h6,5 ...


In order to obtain an upper triangular matrix starting from this one, it is
necessary to multiply it times a certain G

i
, which is a matrix modifying

only two rows of H
m

, in order to erase h2,1 ahd modifying all the remaining
components of the first two lines. This matrix can be called G

2,1
, since it

acts in order to erase h2,1, and it equals the identity in the remaining lines:
this is basically a 2× 2 matrix; then, we will have a Hessenberg matrix with
h2,1 = 0; then, a 3×3 matrix, called G

3,2
is applied to erase the element h3,2.

Every time that we apply this operation, we are basically peforming a
matrix product; so, we have something like:

H
m

= G
2,1
H

(1)

m
= G

3,2
G

2,1
H

(2)

m
= ...

the product of all the G
i

is a matrix Q
m

, which is proved to be orthogonal;

indeed, it comes from the product of orthonormal matrices, and therefore
it is orthonormal too. Furthermore, if the operation is completed, H

m
is

transformed in a triangular matrix, R; so, we obtained:

H
m

= Q
m
R

this is the QR factorization of the Hessenberg matrix, obtained in an effi-
cient way, exploiting the properties of the matrix and of the Givens rotation
matrices.
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3.3 Additional remarks

GMRES is an iterative method, and therefore the way in which this method
has been explained may be misleading: the correct way to proceed is not to
build the entire Hessenberg matrix and then modify it and check the residual:
since the method is iterative, it is a good idea to check the residual every
time, in order to understand if it is possible to stop the algorithm and to
obtain a good accuracy. The matrix H

m
is not therefore available after one

iteration: it is build step by step.
After the first step, we have H

1
, which is just a vector of two components;

therefore, the QR factorization for this matrix is just the 2×2 Givens matrix:[
cosϑ1 sinϑ1

− sinϑ1 cosϑ1

] [
h11
h21

]
=

[
h
(1)
11

0

]
After one iteration, this is the result; then, it is possible to evaluate the
residual as:

||r 1|| = −β sinϑ

where β = ||r 0||.
If the solution after one iteration is not accurate enough, it is possible to

go on, and to build the second term; in this case, it will be:

H
(0)

2
=

h11 h12
h21 h22
0 h32


actually, exploiting orthonormality and so on, it is possible to multiply this
times the matrix:  cosϑ1 sinϑ1 0

− sinϑ1 cosϑ1 0
0 0 1


this is the extension of the matrix found in the previous step, with the identity
at the end; by this way,

H
(1)

2
=

h(1)11 h
(1)
12

0 h
(1)
22

0 h32


29



this matrix acts only on the first two rows; here:

h
(1)
12 = h12 cosϑ1 + h22 sinϑ1

and

h
(1)
22 = −h12 sinϑ1 + h22 cosϑ1

Now, we want to eliminate alto the h32 coefficient; by this way, it is necessary

to multiply H
(1)

2
times another 3 × 3 matrix, this time unknown, since we

haven’t worked on ϑ2; we have:

H
(2)

2
=

1 0 0
0 cosϑ2 sinϑ2

0 − sinϑ2 cosϑ2

H
(1)

2
=

1 0 0
0 cosϑ2 sinϑ2

0 − sinϑ2 cosϑ2

 cosϑ1 sinϑ1 0
− sinϑ1 cosϑ1 0

0 0 1

h11 h12
h21 h22
0 h32


therefore, we obtained, for the second step:

QT =

1 0 0
0 cosϑ2 sinϑ2

0 − sinϑ2 cosϑ2

 cosϑ1 sinϑ1 0
− sinϑ1 cosϑ1 0

0 0 1

 =

 cosϑ1 sinϑ1 0
− cosϑ2 sinϑ1 cosϑ2 cosϑ1 sinϑ2

sinϑ2 sinϑ1 − sinϑ2 cosϑ1 cosϑ2


and:

R =

h(1)11 h
(1)
12

0 h
(2)
22

0 0


where:

h
(2)
22 = h

(1)
22 cosϑ2 + h

(1)
32 sinϑ2

this is the QR decomposition for the second iteration. The interesting thing
is in the fact that, going on with the iterations, it is possible to upgrade the
QR decomposition starting from the one obtained at the previous iterations.

The residual is:

r 2 = − βQTê1

∣∣∣
2+1
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the unit vector ê1 selects the first column only, and erases all the remaining
ones; m = 2, so 2 + 1 = 3: the residual is:

r 2 = β(QT)3,1 = β sinϑ2 sinϑ1

but we can recall that:

−β sinϑ1 = r 1

so:

r 1 = −r 1 sinϑ2

This is a general rule; indeed, at each i-th iteration:

||r i|| =
∣∣∣∣− sinϑir i−1

∣∣∣∣
With this residual we can understand if the i-th iteration is sufficient. More-
over, it is not necessary to explicitly calculate the solution to understand if
it is accurate: the evaluation of the residual does not require the evaluation
of y

m
. Given the tolerance t, if:

||rm||
||b||

≤ t

then, y
m

can be calculated as the solution of the system:

R y
m

= βQT

m
ê1

which is the triangular system, very easy to be solved. The matrix R is
the result of the application of the set of Givens matrices to the Hessenberg
matrix; then:

xm = x 0 + V
m
y
m

therefore, at each iteration, it is necessary to store the modified Hessenberg
matrix and the components of the Krylov subspace basis. If the vector v i
is never zero, the Krylov subspace will equal Rn, and the solution is exact,
since it is the global minimum on Rn.
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3.3.1 Final considerations

This procedure suggests that, with respect to the conjugate gradient, we have
a problem: V , which is a full matrix, has to be stored, just like H

m
; this

operation can be memory consuming.
Another possibility for the method to fail is in the Gram-Schmidt algo-

rithm; indeed, this can be unstable, and so the quality of our basis may be
bad; if the basis is ill-defined, everything will be affected; this usually oc-
curs if the system matrix A is ill-conditioned. This introduces the following
subject, which is preconditioning, which will be quickly discussed.

Before discussing preconditioners, it is necessary to point out that there
are different formulations for GMRES, using different ideas; an idea is to use
restarting. With restarting methods, we fix a priori the maximum dimen-
sion of the Krylov subspace to a certain Ndim; then, after Ndim iterations, we
compute the solution and we use this as initial guess for a new cycle of Ndim

iterations; this solution saves memory, since we are fixing the maximum di-
mension of the matrix; on the other hand, we lose the convergence properties
of the method, since we are getting closer and closer to the solution, without
using the method in the “natural way”.
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Chapter 4

Preconditioning

As usual, our objective is to solve:

Ax = b

but in this case, we consider to have, for hypothesis, an ill-conditioned matrix:

κ(A)� 1

Now, a question: is there some matrix M−1 such that, if we multiply both
members times it, we get a new system with better conditioning number?

M−1Ax = M−1b

defining:

Ã , M−1A

and

b̃ = M−1b

we want:

κ(Ã)� κ(A)

Obviously, the best possible choice is:

M−1 = A−1
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indeed, by this way, Ã = I , and the conditioning number equals one: the
system is automatically solved. But this is not reasonable: we want to solve
a linear system with efficient methods, and inverting a matrix to obtain a
preconditioner is not reasonable. But this idea is useful, because it suggests
that M should approximate somehow the matrix A, and that, given:

M y = c

the solution of this system should be easy. If M satisfies these two properties,
it is a good preconditioner.

Different kind of preconditioners can be applied; an alternative to what
we discussed up to this moment, which were left preconditioners, are right
preconditioners, which are matrices multiplied by right; from:

Ax = b

let us define

u = M x

so:

AM−1 u = b

and:

Ã = AM−1

in this case, the right hand side is the same; the residual is:

r = b − Ã u = b − Ax

so the residual, in this case, is not changing; this is very important in CG or
in GMRES, because, by this way, the stopping criterion remains the same, for
both preconditioned or not residuals! Therefore, even if left preconditioners
are easier to be applied, they are not always the best choice.

We stated that the preconditioning matrix has to be, in some sense, an
approximation of the original matrix; therefore, a good class of precondition-
ers are incomplete factorizations. Let A be a matrix; we know that it is
possible to compute the LU factorization, and we know that, if we know this
factorization, the solution of the system become easy. But the computation
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of the exact factorization is quite complicated, and requires a lot of calcula-
tions, so we don’t want to compute the exact L and U matrices, but we want
to obtain something which give, as product, something which approximates
the system matrix A:

L
incomplete

U
incomplete

= M ∼ A

So: how to compute these matrices? It is possible to find in literature the
0-fill in algorithm, and, sometimes, this is working. However, if we accept
more elements, the preconditioner improves; depending on the fill in, we can
obtain better preconditioners. Usually, a moderate fill-in is sufficient.

What is usually done for the calculation of the ILU (Incomplete LU) is
to put a threshold, and if the computed value is too low, we neglect it.

An alternative is the Choleski factorization.
Another alternative, which is quite complicated but very good, is to con-

sider the following matrix norm:∣∣∣∣I −M−1A
∣∣∣∣

in this case, some elements of M−1 are fixed, and then it is possible to try to
minimize this norm, changing the values of M ; this is much more complicated,
but it is also a very good preconditioner.
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